Advertisement

Crystal Structures of Novel Synthesized Potassium Silicates and Aluminosilicates with Rare Earth Elements: K3REESi6O15·nH2O (REE = Tm, Eu) and K2REEAlSi4O12·nH2O (REE = Pr, Tb, Dy)

  • Ekaterina V. KanevaEmail author
  • Ludmila F. Suvorova
  • Vladimir L. Tauson
Original Paper

Abstract

Silicates of composition K2.75Tm[Si6(O,OH)12]·0.82H2O and K2.61Eu[Si6(O,OH)12]·0.95H2O and aluminosilicates of composition K1.94Pr[AlSi4(O,OH)12]·0.32H2O, K1.98Tb[AlSi4(O,OH)12]·0.32H2O and K1.96Dy[AlSi4(O,OH)12]·0.38H2O were synthesized under hydrothermal conditions. K3REESi6O15·nH2O (REE = Tm, Eu) are orthorhombic, S.G. Pbam, and have the following unit cell parameters: a = 14.850(1) and 14.834(1) Å, b = 15.899(1) and 15.877(1) Å, c = 7.242(1) and 7.243(1) Å, V = 1709.9(1) and 1705.8(1) Å3 for KTm- and KEu-silicate phase, respectively. K2REEAlSi4O12·nH2O (REE = Pr, Tb, Dy) are monoclinic, S.G. C2/c, a = 26.853(1), 26.619(1) and 26.625(1) Å, b = 7.393(1), 7.255(1) and 7.249(1) Å, c = 14.855(1), 14.820(1) and 14.774(1) Å, β = 123.551(1), 123.515(1) and 123.522(1)°, V = 2462.6(2), 2386.3(2) and 2377.2(1) Å3 for KPr-, KTb- and KDy-aluminosilicates, respectively. Eu, Pr, Tb, Dy in the crystal structures have a trivalent state, while Tm has two- and three-valence form.

Graphic Abstract

The article describes the features of the crystal structures and the form of the entry of REE into the synthesized under hydrothermal conditions silicates of composition K2.75Tm[Si6(O,OH)12]·0.82H2O and K2.61Eu[Si6(O,OH)12]·0.95H2O and aluminosilicates of composition K1.94Pr[AlSi4(O,OH)12]·0.32H2O, K1.98Tb[AlSi4(O,OH)12]·0.32H2O and K1.96Dy[AlSi4(O,OH)12]·0.36H2O.

Keywords

Hydrothermal synthesis REE-potassium silicates REE-potassium aluminosilicates X-ray diffraction Crystal structure refinement 

Notes

Acknowledgements

The authors are grateful to Sergey Krivovichev and Maren Pink, who essentially improved the manuscript. The study was performed using the equipment at the Centre of Collective Use (“Isotopic-geochemistry investigations centre” of A.P. Vinogradov Institute of Geochemistry SB RAS and “Baikal analytical center for collective use” of A.E. Favorsky Irkutsk Institute of Chemistry SB RAS). This work was supported by the governmental assignment in terms of Project IX.125.3 (0350-2016-0025) and with Russian Foundation for Basic Research funding (Grant 16-05-00392 A).

References

  1. 1.
    Larsen RB (2002) Can Mineral 40:137–151.  https://doi.org/10.2113/gscanmin.40.1.137 CrossRefGoogle Scholar
  2. 2.
    Hulsbosch N, Hertogen J, Dewaele S, Andre L, Muchez P (2014) Geochim Cosmochim Acta 132:349–374.  https://doi.org/10.1016/j.gca.2014.02.006 CrossRefGoogle Scholar
  3. 3.
    Smythe DJ, Brenan JM (2016) Earth Planet Sci Lett 453:260–266.  https://doi.org/10.1016/j.epsl.2016.08.013 CrossRefGoogle Scholar
  4. 4.
    Suvorova LF, Kaneva EV, Lipko SV, Tauson VL, Taroev VK, Kashaev AA (2017) Exp Geosci 23(1):104–107Google Scholar
  5. 5.
    Taroev VK, Kashaev AA, Malcherek T, Göttlicher J, Kaneva EV, Vasiljev AD, Suvorova LF, Suvorova DS, Tauson VL (2015) J Solid State Chem 227:196–203.  https://doi.org/10.1016/j.jssc.2015.03.004 CrossRefGoogle Scholar
  6. 6.
    Taroev V, Göttlicher J, Kroll H, Kashaev A, Suvorova L, Pentinghaus H, Bernotat-Wulf H, Breit U, Tauson V, Lashkevich V (2008) Eur J Mineral 20:635–651.  https://doi.org/10.1127/0935-1221/2008/0020-1840 CrossRefGoogle Scholar
  7. 7.
    Rastsvetaeva RK, Aksenov SM, Taroev VK (2010) Crystallogr Rep 55:1041–1049.  https://doi.org/10.1134/S1063774510060222 CrossRefGoogle Scholar
  8. 8.
    Aksenov SM, Rastsvetaeva RK, Rassylov VA, Bolotina NB, Taroev VK, Tauson VL (2013) Microporous Mesoporous Mater 182:95–101.  https://doi.org/10.1016/j.micromeso.2013.08.021 CrossRefGoogle Scholar
  9. 9.
    Bruker (2003) APEX2. Bruker AXS Inc., Madison, Wisconsin, U.S.A.Google Scholar
  10. 10.
    Bruker (2007) SAINT. Bruker AXS Inc., Madison, Wisconsin, U.S.A.Google Scholar
  11. 11.
    Bruker (2009) SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.Google Scholar
  12. 12.
    Palatinus L, Chapuis G (2007) J Appl Crystallogr 40:786.  https://doi.org/10.1107/S0021889807029238 CrossRefGoogle Scholar
  13. 13.
    Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) J Appl Crystallogr 36:1487.  https://doi.org/10.1107/S0021889803021800 CrossRefGoogle Scholar
  14. 14.
    Shannon RD (1976) Acta Crystallogr A 32:751–767.  https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  15. 15.
    Brese NE, O’Keeffe M (1991) Acta Crystallogr B 47:192–197.  https://doi.org/10.1107/S0108768190011041 CrossRefGoogle Scholar
  16. 16.
    Pushcharovsky DYu, Karpov OG, Pobedimskaya EA, Belov NV (1977) Dokl Akad Nauk SSSR 234:1323–1325Google Scholar
  17. 17.
    Haile SM, Wuensch BJ (2000) Acta Crystallogr B56:335–348.  https://doi.org/10.1107/S0108768199015785 CrossRefGoogle Scholar
  18. 18.
    Kaneva EV, Suvorova LF, Tauson VL (2018) J Struct Chem 59(2):377–383.  https://doi.org/10.1134/S0022476618020178 CrossRefGoogle Scholar
  19. 19.
    Lee C-S, Liao Y-C, Hsu J-T, Wang S-L, Lii K-H (2008) Inorg Chem 47:1910–1912.  https://doi.org/10.1021/ic7024445 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ekaterina V. Kaneva
    • 1
    Email author
  • Ludmila F. Suvorova
    • 1
  • Vladimir L. Tauson
    • 1
  1. 1.A.P. Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations