Advertisement

Journal of Chemical Crystallography

, Volume 49, Issue 3, pp 174–180 | Cite as

Two Related Thienoquinolizidines and Their Crystal, Molecular Structure and Electronic Properties

  • Július SivýEmail author
  • Štefan Marchalín
  • Peter Šafář
Original Paper

Abstract

Two crystals of quinolizidine compounds; systematic name: (rac)-(7,8,9,9a)-tetrahydro-4H-thieno[2,3-b]quinolizine-6,10-dione, (I), and (rac)-(9a,10)-10-hydroxy-8,9,9a,10-tetrahydro-4H-thieno[2,3-b]quinolizin-6(7H)-one, (II), have been compared and characterized by single-crystal X-ray diffraction and electronic analysis. N-heterocyclic rings in both structures are not planar and adopt a half-chair conformation. The molecules of (I) are linked via weak C–H···O hydrogen bonds into chains along c axis. While the crystal stacks in compound (II) are formed by strong O–H···O hydrogen bonds the molecules link into infinite zig-zag chains along the b axis. In both crystal structures, ππ stacking and C–H···π interactions are also observed. Calculation of the net atomic charges shows that O atoms in both compounds carry a relatively large negative charges, in comparison with the corresponding H atoms. Crystal, molecular and electronic structures of these compounds, which are influenced by hydrogen-bonded assemblies in the molecular crystals, are discussed in detail.

Graphical Abstract

Crystal, molecular and electronic structures of two related tricyclic compounds containing thienoquinolizidine ring skeleton, both structures have similar quinolizine ring moieties assuming conformations resembling half-chair.

Keywords

Chiral compounds Quinolizine derivatives Racemic mixture X-ray structure determination Ab initio calculations DFT/B3LYP/6-311G/Auto 

Notes

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract no. APVV-17-0513 and by the Scientific Grant Agency of the Slovak Republic VEGA (Project No. 1/0262/19). This contribution is also the result of the project: Research Center for Industrial Synthesis of Drugs, ITMS 26240220061, supported by the Research & Development Operational Program funded by the ERDF. We are grateful to the HPC centre at the Slovak University of Technology in Bratislava, which is a part of the Slovak Infrastructure of High Performance Computing (SIVVP project, ITMS code 26230120002, funded by the European region development funds, ERDF), for the computational time and the resources.

References

  1. 1.
    Kubo H, Kobayashi J, Higashiyama K, Kamel J, Fujii Y, Ohmiya S (2000) Biol Pharm Bull 23:1114–1117CrossRefGoogle Scholar
  2. 2.
    Guarna A, Occhiato EG, Machetti F, Trabocchi A, Scarpi D, Danza G, Mancina R, Comerci A, Serio M (2001) Bioorg Med Chem 9:1385–1393CrossRefGoogle Scholar
  3. 3.
    Harris GS, Kozarich JW (1997) Curr Opin Chem Biol 1:254–259CrossRefGoogle Scholar
  4. 4.
    Ramazani A, Sheikhi M, Ahankar H et al (2017) J Chem Crystallogr 47:198.  https://doi.org/10.1007/s10870-017-0697-8 CrossRefGoogle Scholar
  5. 5.
    Cebollada A, Vellé A, Sanz Miguel PJ (2016) Acta Cryst C72:456–459Google Scholar
  6. 6.
    DeStefano MR, Geiger DK (2016) Acta Cryst C72:491–497Google Scholar
  7. 7.
    Pingali S, Donahue JP, Payton-Stewart F (2015) Acta Cryst C71:262–265Google Scholar
  8. 8.
    Wang YY, Feng YN, Wang YH et al (2017) J Chem Crystallogr 47:157.  https://doi.org/10.1007/s10870-017-0692-0 CrossRefGoogle Scholar
  9. 9.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone, V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino, J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene, M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth, GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) GAUSSIAN09 Gaussian Inc. Wallingford, CT, USAGoogle Scholar
  10. 10.
    Šafář P, Marchalín Š, Prónayová N, Vrábel V, Lawson AM, Othman M, Daïch A (2016) Tetrahedron 72:3221–3231CrossRefGoogle Scholar
  11. 11.
    Sheldrick GM (2015) Acta Cryst C71:3–8Google Scholar
  12. 12.
    Burla MC, Caliandro R, Carrozzini B, Cascarano GL, Cuocci C, Giacovazzo C, Mallamo M, Mazzon A, Polidori G (2015) Crystal structure determination and refinement via SIR2014. J Appl Cryst 48:306–309CrossRefGoogle Scholar
  13. 13.
    Brandenburg K (1999) Diamond Version 2.1c. Crystal Impact GbR, BonnGoogle Scholar
  14. 14.
    Farugia LJ (1997) J Appl Crystallogr 30:565CrossRefGoogle Scholar
  15. 15.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Cryst 39:453–457CrossRefGoogle Scholar
  16. 16.
    Hypercube, Inc. (2007) Hyperchem 7.0 Gainesville, FL, 32601, USAGoogle Scholar
  17. 17.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341CrossRefGoogle Scholar
  18. 18.
    Spek AL (2009) Acta Cryst D65:148–155Google Scholar
  19. 19.
    Hübschle C, Sheldrick GM, Dittrich B (2011) J Appl Cryst 44:1281–1284CrossRefGoogle Scholar
  20. 20.
    Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97(6):1354–1358CrossRefGoogle Scholar
  21. 21.
    Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555–1573CrossRefGoogle Scholar
  22. 22.
    Peňa-Solórzano D, König B, Sierra CA, Puentes CO (2017) Acta Cryst E73:804–808Google Scholar
  23. 23.
    Singh UP, Tomar K, Kashyap S, Verma P (2017) J Chem Crystallogr 47:69CrossRefGoogle Scholar
  24. 24.
    Clark RC, Reid JS (1995) The analytical calculation of absorption in multifaceted crystals. Acta Cryst A51:887–897CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringSlovak University of TechnologyBratislavaSlovak Republic
  2. 2.Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovak Republic

Personalised recommendations