Advertisement

X-ray Structure and DFT Studies of a New Square Planar Silver(I) Complex of Ketene S,S-Dithioacetal Ligand

  • Saied. M. SolimanEmail author
  • Yahia Nasser MabkhotEmail author
  • Jörg H. Albering
Original Paper

Abstract

The [AgL2]ClO4 complex, where L is ketene S,S-dithioacetal type ligand, is synthesized and characterized using elemental analysis, different spectroscopic techniques (FTIR and NMR) and single crystal X-ray diffraction (SC-XRD). The Ag-atom is coordinated by two oxygen and two sulfur atoms of both bidentate ligands resulting in a distorted square planar environment augmented by two weak contacts with two oxygen atoms from the perchlorate anion. The H⋯H (42.0%), O⋯H (29.7%), C⋯H (10.8%) and S⋯H (11.7%) intermolecular contacts were quantified using Hirshfeld analysis. The PBEPBE and WB97XD methods are the best to predict the Ag–S and Ag–O(L) distances. Natural bond orbital (NBO) analysis showed that each ligand (L) transferred 0.1507 e (exp. 0.1715 e) to Ag-atom while the perchlorate anion lost 0.1748 e (exp. 0.1481 e) to silver {0.5227 e (exp. 0.5088 e)}.

Graphical Abstract

The structure aspects of the newly synthesized square planar [AgL2]ClO4 complex, where L is ketene S,S-dithioacetal ligand, were analyzed using different spectroscopic techniques (FT-IR, NMR) and X-ray single crystal structure combined with DFT calculations.

Keywords

Silver(I) Ketene S,S-dithioacetal Square planar Hirshfeld NBO 

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for its funding this prolific research group No. (R. G. P. 2/17/40/2019).

Supplementary material

10870_2019_772_MOESM1_ESM.docx (3.9 mb)
Supplementary Information FTIR and NMR spectra as well as some details regarding Hirshfeld analysis and DFT results are given as supplementary information—Supplementary material 1 (DOCX 3995 KB)

References

  1. 1.
    Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148CrossRefGoogle Scholar
  2. 2.
    Rowan R, Tallon T, Sheahan AM, Curran R, McCann M, Kavanagh K, Devereux M, McKee V (2006) Silver bullets in antimicrobial chemotherapy: synthesis, characterisation and biological screening of some new Ag(I)-containing imidazole complexes. Polyhedron 25:1771–1778CrossRefGoogle Scholar
  3. 3.
    Kascatan-Nebioglu A, Panzner MJ, Tessier CA, Cannon CL, Youngs WJ (2007) N-Heterocyclic carbene–silver complexes: a new class of antibiotics. Coord Chem Rev 251:884–895CrossRefGoogle Scholar
  4. 4.
    Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA (2015) Noble metals in medicine: latest advances. Coord Chem Rev 284:329–350CrossRefGoogle Scholar
  5. 5.
    Glisic BD, Senerovic L, Comba P, Wadepohl H, Veselinovic A, Milivojevic DR, Djuran MI, Nikodinovic-Runic J (2016) Silver(I) complexes with phthalazine and quinazoline as effective agents against pathogenic Pseudomonas aeruginosastrains. J Inorg Biochem 155:115–128CrossRefGoogle Scholar
  6. 6.
    Ahmad S, Isab AA, Ali S, Al-Arfaj AR (2006) Perspectives in bioinorganic chemistry of some metal based therapeutic agents. Polyhedron 25:1633–1645CrossRefGoogle Scholar
  7. 7.
    Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130CrossRefGoogle Scholar
  8. 8.
    Fox CL, Modak SM (1974) Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother 5:582–588CrossRefGoogle Scholar
  9. 9.
    Guggenbichler JP, Boswald M, Lugauer S, Krall T (1999) A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27:S16–S23CrossRefGoogle Scholar
  10. 10.
    Slawson RM, Vandyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27:72–79CrossRefGoogle Scholar
  11. 11.
    Ronconi L, Sadler PJ (2007) Using coordination chemistry to design new medicines. Coord Chem Rev 251:1633–1648CrossRefGoogle Scholar
  12. 12.
    Curran R, Lenehan J, McCann M, Kavanagh K, Devereux M, Egan DA, Clifford G, Keane K, Creaven BS, Mckee V (2007) [Ag2(aca)2]n and [Ag4(aca)4(NH3)2] (acaH = 9-anthracenecarboxylic acid): synthesis, X-ray crystal structures, antimicrobial and anti-cancer activities. Inorg Chem Commun 10:1149–1153CrossRefGoogle Scholar
  13. 13.
    Nomiya K, Yokoyama H (2002) Syntheses, crystal structures and antimicrobial activities of polymeric silver(I) complexes with three amino-acids [aspartic acid (H2asp), glycine (Hgly) and asparagine (Hasn)]. Dalton Trans.  https://doi.org/10.1039/B200684G Google Scholar
  14. 14.
    Coyle B, McCann M, Kavanagh K, Devereux M, McKee V, Kayal N, Egan D, Deegan C, Finn GJ (2004) Synthesis, X-ray crystal structure, anti-fungal and anti-cancer activity of [Ag2(NH3)2(salH)2] (salH2 = salicylic acid). J Inorg Biochem 98:1361–1366CrossRefGoogle Scholar
  15. 15.
    Nomiya K, Takahashi S, Noguchi R, Nemoto S, Takayama T, Oda M (2000) Synthesis and characterization of water-soluble silver(I) complexes with L-histidine (H2his) and (S)-(–)-2-pyrrolidone-5-carboxylic acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis)]n and {[Ag(Hpyrrld)]2}n in the solid state. Inorg Chem 39:3301–3311CrossRefGoogle Scholar
  16. 16.
    Nomiya K, Kondoh Y, Onoue K, Kasuga NC, Nagano H, Oda M, Sudoh T, Sakuma S (1995) Synthesis and characterization of polymeric, anionic thiosalicylato-Ag(I) complexes with antimicrobial activities. J Inorg Biochem 58:255–267CrossRefGoogle Scholar
  17. 17.
    Nomiya K, Tsuda K, Sudoh T, Oda M (1997) Ag(I)-N bond-containing compound showing wide spectra in effective antimicrobial activities: polymeric silver(I) imidazolate. J Inorg Biochem 68:39–44CrossRefGoogle Scholar
  18. 18.
    Abuskhuna S, Briody J, McCann M, Devereux M, Kavanagh K, Fontecha JB, McKee V (2004) Synthesis, structure and anti-fungal activity of dimeric Ag(I) complexes containing bis-imidazole ligands. Polyhedron 23:1249–1255CrossRefGoogle Scholar
  19. 19.
    Zhu HL, Chen Q, Peng WL, Qi SJ, Xu AL, Chen XM (2001) Syntheses, crystal structures and cytotoxities of silver (I) complexes of 2, 2′-bipyridines and 1, 10-phenanthroline. Chin J Chem 19:263–267CrossRefGoogle Scholar
  20. 20.
    Li WB, Li WH (2011) Synthesis and crystal structure of a polynuclear silver(I) complex with 4,4′-biphenyldicarboxylate and N-propylethane-1,2-diamine. Synth React Inorg MetOrg Nano-Met Chem 41:626–630CrossRefGoogle Scholar
  21. 21.
    Yesilel OZ, Kastas G, Darcan C, Ilker I, Pasaoglu H, Buyukgungor O (2010) Syntheses, thermal analyses, crystal structures and antimicrobial properties of silver(I)-saccharinate complexes with diverse diamine ligands. Inorg Chim Acta 363:1849–1858CrossRefGoogle Scholar
  22. 22.
    Ahmad S, Yousaf A, Tahir MN, Isab AA, Monim-ul-Mehboob M, Linert W, Saleem M (2015) Structural characterization and antimicrobial activity of a silver(I) complex of arginine. J Struct Chem 56:1653–1657CrossRefGoogle Scholar
  23. 23.
    Pretsch T, Hart H (2005) Structural studies on 1:1 and 2:1 adducts of silver(I) cyanide with alkanediamine ligands. Inorg Chim Acta 358:1179–1185CrossRefGoogle Scholar
  24. 24.
    Nomiya K, Kondoh Y, Nagano H, Oda M (1995) Characterization by electrospray ionization (ESI) mass spectrometry of an oligomeric, anionic thiomalato-silver(I) complex showing biological activity. Chem Commun.  https://doi.org/10.1039/C39950001679 Google Scholar
  25. 25.
    Zachariadis PC, Hadjikakou SK, Hadjiliadis N, Michaelides A, Skoulika S, Ming Y, Xiaolin Y (2003) Synthesis, study and structural characterization of a new water soluble hexanuclear silver(I) cluster with the 2-mercapto-nicotinic acid with possible antiviral activity. Inorg Chim Acta 343:361–365CrossRefGoogle Scholar
  26. 26.
    James TH (1977) The theory of the photographic process, 4th edn. Macmillan, New YorkGoogle Scholar
  27. 27.
    Araki T, Seki K, Nariioka S, Ishii H, Takata Y, Yokoyama T, Ohta T, Okajima T, Watanabe S, Tani T (1993) XANES spectroscopic studies of merocyanine dyes and their adsorbed states on AgCl. Jpn J Appl Phys 32:434–438CrossRefGoogle Scholar
  28. 28.
    Cowdery-Corvan PJ, Whitcomb DR (2002) In: Diamond AS, Weiss DS (eds) Handbook of Imaging Materials. Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Slusarek WK, Yang X, Irving ME, Levy DH, Mooberry JB, Seifert JJ, Reynolds JH, Irving LM (2001) Imaging element containing a blocked photographic developer, EP 1113316Google Scholar
  30. 30.
    Singh B, Sharma USP, Sharma DK (1980) Conductometric and spectrometric studies on the complexes of Ag (I) and Hg (II) With 1-phenyltetrazoline-5-thione. J Indian Chem Soc 57:1066–1070Google Scholar
  31. 31.
    McMorran DA, Steel PJ (2002) New U-shaped components for metallosupramolecular assemblies: synthesis and coordination chemistry of 2,6-bis(4-(3-pyridyloxy)phenoxy)pyrazine. Supramol Chem 14:79–85CrossRefGoogle Scholar
  32. 32.
    Richardson C, Steel PJ (2003) 3,6-Di(2-pyridyl)-1,4,2,5-dioxadiazine and a silver coordination polymer with an unprecedented metallosupramolecular topology. Eur J Inorg Chem 2003:405–408CrossRefGoogle Scholar
  33. 33.
    Sumby CJ, Steel PJ (2005) An investigation of the coordination chemistry of the hexadentate ligand di-2-pyridylketone azine; the formation of a discrete tetranuclear complex with silver nitrate. New J Chem 29:1077–1081CrossRefGoogle Scholar
  34. 34.
    Lewis W, Seel PJ (2005) Chiral heterocyclic ligands. XI. Self-assembly and X-ray crystal structures of chiral silver coordination polymers of (S)-(–)-nicotine. Supramol Chem 17:579–584CrossRefGoogle Scholar
  35. 35.
    Soliman SM, Mabkhot YN, Barakat A, Ghabbour HA (2017) A highly distorted hexacoordinated silver(I) complex: synthesis, crystal structure, and DFT studies. J Coord Chem 70:1339–1356CrossRefGoogle Scholar
  36. 36.
    Siemens analytical X-ray Instruments Inc.: Madison, WI (1995)Google Scholar
  37. 37.
    SADABS: Sheldrick GM (1996) University of Goettingen: Goettingen, GermanyGoogle Scholar
  38. 38.
    Sheldrick GM (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst A 71:3–8CrossRefGoogle Scholar
  39. 39.
    Mabkhot YN, Barakat A, Al-Showiman SS, Soliman SM, Frey W, Ghabbour HA (2016) Crystal structure of 2-(bis(methylthio)methylene)-1-phenylbutane-1,3-dione, C13H14O2S2. Z Kristallogr NCS 231:475–476Google Scholar
  40. 40.
    Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal Explorer (Version 3.1), University of Western AustraliaGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF (2009) Gaussian, Inc., Wallingford CTGoogle Scholar
  42. 42.
    GaussView Version 4.1 (2009) Dennington II R, Keith T, Millam J, Semichem Inc., Shawnee MissionGoogle Scholar
  43. 43.
    Zhurko GA, Zhurko DA (2005) Chemcraft: Lite Version Build 08 (Freeware)Google Scholar
  44. 44.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283CrossRefGoogle Scholar
  45. 45.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298CrossRefGoogle Scholar
  46. 46.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310CrossRefGoogle Scholar
  47. 47.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS (1982) Self-consistent molecular orbital methods. 23. A polarization basis set for second row elements. J Chem Phys 77:3654–3665CrossRefGoogle Scholar
  48. 48.
    Blaudeau JP, McGrath MP, Curtiss LA, Radom L (1997) Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J Chem Phys 107:5016–5021CrossRefGoogle Scholar
  49. 49.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1. University of Wisconsin, MadisonGoogle Scholar
  50. 50.
    Ok KM, Halasyamani PS, Casanova D, Llunell M, Alvarez S (2006) Distortions in octahedrally coordinated d0 transition metal oxides: a continuous symmetry measures approach. Chem Mater 18:3176–3183CrossRefGoogle Scholar
  51. 51.
    Santiaqo A, David A, Llunell M, Pinsky M (2002) Continuous symmetry maps and shape classification. The case of six-coordinated metal compounds. New J Chem 26:996–1009CrossRefGoogle Scholar
  52. 52.
    Yang L, Powell DR, Houser RP (2007) Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans 9:955–964CrossRefGoogle Scholar
  53. 53.
    Okuniewski A, Rosiak D, Chojnacki J, Becker B (2015) Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas. Polyhedron 90:47–57CrossRefGoogle Scholar
  54. 54.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Chemistry, College of Science & ArtsKing Abdulaziz UniversityRabighSaudi Arabia
  3. 3.Department of pharmaceutical Chemistry, College of pharmacyKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Graz University of TechnologyGrazAustria

Personalised recommendations