Advertisement

Twinned α p-Aminobenzoic Acid at 106 K

  • Angela Hoffman
  • Edward J. ValenteEmail author
Original Paper

Abstract

The α crystalline form of p-aminobenzoic acid is monoclinic and prone to twinning by pseudo-merohedry (a ≈ c). A structure was reported by Lai and Marsh (1967) on an almost untwinned specimen where (a-c)/σ is 36. In revisiting this structure, a sample showing twinning was obtained from the metabolites of a Streptomyces strain collected from the soil at the ancient Roman city of Pollentia on the Balearic island of Mallorca. A 106(2) K determination shows pseudo-merohedral twinning, with a = 18.5452(6), b = 3.73406(15), c = 18.5484(7) Å, β = 93.790(3)°, V = 1281.65(8) Å3, and (ac)/σ 5. The refinement included twin contributions [major domain 0.7435(15)] and produced a higher resolution structure determination. The cell contains two neutral molecules per asymmetric unit. Both form complementary carboxylic acid dimers across inversions centers of P21/n. Nitrogens are pyramidal and donate Hydrogen-bonds through one amine hydrogen; a stronger two-center N–H⋯O in one case, and a weaker three-center N–H⋯(O, O’) in the other. The molecular structure shows a pronounced quinoid distortion, and a comparison is drawn with the previous studies, an ordered β monoclinic phase, and with other structural studies.

Graphical Abstract

The α monoclinic phase of p-aminobenzoic acid crystallizes commonly as pseudo-merohedral twins, and a specimen studied at 106 K had a ≈ c within 5 esd’s, allowing an improved refinement and a more accurate molecular model.

Keywords

p-Aminobenzoic acid Twinning Pseudo-merohedry Hydrogen-bonding 

Notes

Acknowledgements

We thank the custodians of the Pollentia archeological site, Miguel Ángel Cau Ontiveros, Esther Chávez Álvarez, Fr. Richard Rutherford for access and guidance. We thank the University of Portland and the College of Arts and Sciences for summer research support for the Pollentia Undergraduate Research Expedition to Mallorca, Spain, and the National Science Foundation for support of crystallographic studies (MRI-0604188) and for LCMS equipment (MRI-0621648).

Compliance with Ethical Standards

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Eudes A, Bozzo GG, Waller JC, Naponelli V, Lim E-K, Bowles DJ, Gregory JF III, Hanson AD (2008) Metabolism of the folate precursor p-aminobenzoate in plants. Glucose ester formation and vacuolar storage. J Biol Chem 283:15451–15459CrossRefGoogle Scholar
  2. 2.
    Wegkamp A, van Oorschot W, de Vos WM, Smid EJ (2007) Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl Environ Microbiol 73(8):2673–2681CrossRefGoogle Scholar
  3. 3.
    Blanchard KC (1941) The isolation of p-aminobenzoic acid from yeast. J Biol Chem 131:919–926Google Scholar
  4. 4.
    Lai TF, Marsh RE (1967) The crystal structure of p-aminobenzoic acid. Acta Crystallogr A 22:885–889CrossRefGoogle Scholar
  5. 5.
    Killean RCG, Tollin P (1965) Twinning in p-aminobenzoic acid. Acta Crystallogr A 19:482–483CrossRefGoogle Scholar
  6. 6.
    Groth P (1917) Chemische Kristallographie, Teil 4 p. Verlag von Wilhelm Engelmann, Leipzig, p 509Google Scholar
  7. 7.
    Gracin S, Rasmuson AC (2004) Polymorphism and crystallization of p-aminobenzoic acid. Cryst Growth Des 4:1013–1023CrossRefGoogle Scholar
  8. 8.
    Gracin S, Fischer A (2005) Redetermination of the beta-polymorph of p-aminobenzoic acid. Acta Crystallogr A E61:o1242–o1244Google Scholar
  9. 9.
    Sullivan RA, Davey RJ (2015) Concerning the crystal morphologies of the α and β polymorphs of p-aminobenzoic acid. CrystEngComm 17:1015–1023CrossRefGoogle Scholar
  10. 10.
    Compagnon I, Antoine R, Rayane D, Broyer M, Dugourd P (2003) Permanent electric dipole of gas-phase p-aminobenzoic acid. J Phys Chem A 107:3036–3039CrossRefGoogle Scholar
  11. 11.
    Yan T, Wang K, Duan D, Tan X, Liua B, Zou B (2014) p-Aminobenzoic acid polymorphs under high pressures. RSC Adv 4:15534–15541CrossRefGoogle Scholar
  12. 12.
    Koa YG, Ma PX (2012) Growth of oriented p-aminobenzoic acid crystals by directional freezing. CrystEngComm 14(23):7891–7894CrossRefGoogle Scholar
  13. 13.
    Athimoolan S, Natarajan S (2007) 4-Carboxyanilinium (2R,3R)-tartrate and a redetermination of the -polymorph of 4-aminobenzoic acid. Acta Crystallogr A C63:o514–o517Google Scholar
  14. 14.
    Kremer CB (1956) The laboratory synthesis of a simple vitamin: p-aminobenzoic acid. J Chem Educ 33(2):71–72CrossRefGoogle Scholar
  15. 15.
    Toroz D, Rosbottom I, Turner TD, Corzo DMC, Hammond RB, Lai X, Roberts KJ (2015) Towards an understanding of the nucleation of α-p-aminobenzoic acid from ethanolic solutions: a multi-scale approach. Faraday Discuss 179:79–114CrossRefGoogle Scholar
  16. 16.
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A A64:112–122CrossRefGoogle Scholar
  17. 17.
    Herbst-Irmer R, Sheldrick GM (1998) Refinement of twinned structures with SHELXL97. Acta Crystallogr B54:443–449CrossRefGoogle Scholar
  18. 18.
    Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854CrossRefGoogle Scholar
  19. 19.
    Mercury ver. 3.6. Cambridge Crystallographic Data Center (2015)Google Scholar
  20. 20.
    Black JFB, Davey RJ, Gowers RJ, Yeoh A (2015) Ostwald’s rule and enantiotropy: polymorph appearance in the crystallisation of p-aminobenzoic acid. CrystEngComm 17:5139–5142CrossRefGoogle Scholar
  21. 21.
    Brown CJ (1968) The crystal structure of anthranilic acid. Proc R Soc A 302:185–189Google Scholar
  22. 22.
    Kumar SS, Nangia A (2014) A solubility comparison of neutral and zwitterionic polymorphs. Cryst Growth Des 14(4):1865–1881CrossRefGoogle Scholar
  23. 23.
    Etter MC, MacDonald JC (1990) Graph-set analysis of Hydrogen-bond patterns in organic crystals. Acta Crystallogr A B46:256–262CrossRefGoogle Scholar
  24. 24.
    Lago AF, Davalos JZ, deBrito AN (2007) A density functional and ab initio investigation of the p-aminobenzoic acid molecule. Chem Phys Lett 443:232–236CrossRefGoogle Scholar
  25. 25.
    Bürgi H-B, Dunitz JD (1994) Structural correlation, vol 2, VCH Publishers, New York, pp 767–784CrossRefGoogle Scholar
  26. 26.
    Schultz G, Portalone G, Ramondo F, Domenicano A, Hargittai I (1996) Molecular structure of aniline in the gaseous phase: a concerted study by electron diffraction and ab initio molecular orbital calculations. Struct Chem 7:59–71CrossRefGoogle Scholar
  27. 27.
    Lister DG, Tyler JK, Tyler JH, Hog JH, Larsen NW (1974) The microwave spectrum, structure and dipole moment of aniline. J Mol Struct 23:253–264CrossRefGoogle Scholar
  28. 28.
    Feld R, Lehmann MS, Muir KW, Speakman JC (1981) The crystal structure of benzoic acid: a redetermination with X-rays at room temperature. Zeitschrift fur Kristallographie 157(3/4):215–231Google Scholar
  29. 29.
    Wang Y, Saebø S, Pittman CU Jr (1992) The structure of aniline by ab initio studies. J Mol Struct 281(2–3):91–98Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of PortlandPortlandUSA

Personalised recommendations