Advertisement

The Structure and Characterization of 3,4,5-Triiodo-2-Methylthiophene: An Unexpected Iodination Product of 2-Methylthiophene

  • Dinesh G. PatelEmail author
  • Eric D. Sylvester
  • Nicholas R. LeValley
  • Travis B. Mitchell
  • Jason B. Benedict
Brief Communication

Abstract

We report the structure and characterization of 3,4,5-triiodo-2-methylthiophene, obtained as an unexpected, unreported, and significant side product from the iodination of 2-methylthiophene using iodine and iodic acid. Identity of this unexpected product was confirmed by X-ray crystallography and 1H and 13C NMR. The compound crystallizes in the P21/c space group with unit cell parameters a = 16.4183(10) Å, b = 4.1971(3) Å, c = 14.3888(9) Å, β = 111.4442(14), Z = 4, and Dcalc = 3.425 g cm−3. Analysis of residual electron density maps indicated the presence of crystallographic disorder between the 2-methyl and 5-iodo positions leading to a model of two distinct molecules of 3,4,5-triiodo-2-methylthiophene where the atoms of these two groups were exchanged. Non-covalent iodine–iodine and sulfur–iodine interactions are observed.

Graphical Abstract

Three products, two of which are constitutional isomers, are possible when installing multiple iodine atoms on 2-methylthiophene; X-ray structural analysis and spectral characterization show that the 4,5-diiodo isomer is not formed and that the 3,4,5-triiodo isomer is unexpectedly obtained. Halogen and chalcogen bonding are clearly observed.

Keywords

Iodination reaction Thiophene Iodothiophene Halogen bonding Sigma-hole Chalcogen bonding 

Notes

Acknowledgements

DGP thanks Penn State Hazleton for funding in the form of a Research Development Grant. JBB acknowledges support from the National Science Foundation under Grant No. DMR-1455039.

Supplementary material

10870_2019_770_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1575 KB)

References

  1. 1.
    Fitton P, Rick EA (1971) The addition of aryl halides to tetrakis(triphenylphosphine)palladium(0). J Organomet Chem 28(2):287–291.  https://doi.org/10.1016/S0022-328X(00)84578-7 CrossRefGoogle Scholar
  2. 2.
    Littke Adam F, Fu Gregory C (2002) Palladium-catalyzed coupling reactions of aryl chlorides. Angew Chem Int Ed 41 (22):4176–4211.  https://doi.org/10.1002/1521-3773(20021115)41:22%3C4176::AID-ANIE4176%3E3.0.CO;2-U CrossRefGoogle Scholar
  3. 3.
    Racys DT, Sharif SAI, Pimlott SL, Sutherland A (2016) Silver(I)-catalyzed iodination of arenes: tuning the Lewis acidity of N-iodosuccinimide activation. J Org Chem 81(3):772–780.  https://doi.org/10.1021/acs.joc.5b02761 CrossRefGoogle Scholar
  4. 4.
    Sevez G, Pozzo J-L (2011) Toward multi-addressable molecular systems: efficient synthesis and photochromic performance of unsymmetrical bisthienylethenes. Dyes Pigm 89:246–253.  https://doi.org/10.1016/j.dyepig.2010.03.018 CrossRefGoogle Scholar
  5. 5.
    Shinde AT, Zangade SB, Chavan SB, Vibhute AY, Nalwar YS, Vibhute YB (2010) A practical iodination of aromatic compounds by using iodine and iodic acid. Synth Commun 40(23):3506–3513.  https://doi.org/10.1080/00397910903457332 CrossRefGoogle Scholar
  6. 6.
    Zolfigol MA, Khazaei A, Kolvari E, Koukabi N, Soltani H, Behjunia M, Khakyzadeh V (2009) HIO3/KI: a new combination reagent for iodination of aromatic amines and trimethylsilylation of alcohols and phenols through insitu generation of iodine under mild conditions. Arkivoc 13:200–210Google Scholar
  7. 7.
    De PK, Neckers DC (2012) Sulfur containing stable unsubstituted heptacene analogs. Org Lett 14(1):78–81.  https://doi.org/10.1021/ol2028724 CrossRefGoogle Scholar
  8. 8.
    Li S, Tang J, Zhao Y, Jiang R, Wang T, Gao G, You J (2017) Cu-catalyzed controllable C–H mono-/di-/triarylations of imidazolium salts for ionic functional materials. Chem Commun 53(24):3489–3492.  https://doi.org/10.1039/C7CC01076A CrossRefGoogle Scholar
  9. 9.
    O’Connor MJ, Haley MM (2008) Synthesis and properties of butyl-capped dehydrothieno[14]annulenes and their conversion into terthiophenes. Org Lett 10(18):3973–3976.  https://doi.org/10.1021/ol801451x CrossRefGoogle Scholar
  10. 10.
    Youm SG, Hwang E, Chavez CA, Li X, Chatterjee S, Lusker KL, Lu L, Strzalka J, Ankner JF, Losovyj Y, Garno JC, Nesterov EE (2016) Polythiophene thin films by surface-initiated polymerization: mechanistic and structural studies. Chem Mater 28(13):4787–4804.  https://doi.org/10.1021/acs.chemmater.6b01957 CrossRefGoogle Scholar
  11. 11.
    Díaz SA, Gillanders F, Jares-Erijman EA, Jovin TM (2015) Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors. Nat Commun 6:6036.  https://doi.org/10.1038/ncomms7036 CrossRefGoogle Scholar
  12. 12.
    Díaz SA, Menéndez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA (2011) Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating. ACS Nano 5(4):2795–2805.  https://doi.org/10.1021/nn103243c CrossRefGoogle Scholar
  13. 13.
    Fukaminato T, Hirose T, Doi T, Hazama M, Matsuda K, Irie M (2014) Molecular design strategy toward diarylethenes that photoswitch with visible light. J Am Chem Soc 136(49):17145–17154.  https://doi.org/10.1021/ja5090749 CrossRefGoogle Scholar
  14. 14.
    Nakashima T, Fujii R, Kawai T (2011) Regulation of folding and photochromic reactivity of terarylenes through a host–guest interaction. Chem A Eur J 17(39):10951–10957.  https://doi.org/10.1002/chem.201101495 CrossRefGoogle Scholar
  15. 15.
    Patel DG, Walton IM, Cox JM, Gleason CJ, Butzer DR, Benedict JB (2014) Photoresponsive porous materials: the design and synthesis of photochromic diarylethene-based linkers and a metal-organic framework. Chem Commun 50(20):2653–2656.  https://doi.org/10.1039/C3CC49666J CrossRefGoogle Scholar
  16. 16.
    Yam VWW, Ko CC, Wu LX, Wong KMC, Cheung KK (2000) Synthesis, crystal structure, and photochromic properties of rhenium (I) complexes containing the spironathoxazine moiety. Organometallics 19(10):1820–1822CrossRefGoogle Scholar
  17. 17.
    Buckup T, Sarter C, Volpp H-R, Jäschke A, Motzkus M (2015) Ultrafast time-resolved spectroscopy of diarylethene-based photoswitchable deoxyuridine nucleosides. J Phys Chem Lett 6(23):4717–4721.  https://doi.org/10.1021/acs.jpclett.5b01949 CrossRefGoogle Scholar
  18. 18.
    Yagai S, Ohta K, Gushiken M, Iwai K, Asano A, Seki S, Kikkawa Y, Morimoto M, Kitamura A, Karatsu T (2012) Photoreversible supramolecular polymerisation and hierarchical organization of hydrogen-bonded supramolecular Co-polymers composed of diarylethenes and oligothiophenes. Chem A Eur J 18(8):2244–2253.  https://doi.org/10.1002/chem.201103465 CrossRefGoogle Scholar
  19. 19.
    Dolomanov OVB, Gildea LJ, Howard RJ, Puschmann JAK, H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341CrossRefGoogle Scholar
  20. 20.
    Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64(1):112–122CrossRefGoogle Scholar
  21. 21.
    Takahashi K, Ito I, Matsuki Y (1967) Proton magnetic resonance spectra of methyliodothiophenes. Bull Chem Soc Jpn 40(3):605–607.  https://doi.org/10.1246/bcsj.40.605 CrossRefGoogle Scholar
  22. 22.
    Steinkopf W, Hanske W (1937) Studien in der thiophenreihe. XXXIV. Über die Jodderivate des 2-Thiotolens. Justus Liebigs Annalen der Chemie 527(1):264–271.  https://doi.org/10.1002/jlac.19375270118 CrossRefGoogle Scholar
  23. 23.
    Gronowitz S, Svensson A (1986) On the ring-opening of some 3-lithiobithienyls and 3′-lithio-α-terthienyls. Isr J Chem 27(1):25–28.  https://doi.org/10.1002/ijch.198600004 CrossRefGoogle Scholar
  24. 24.
    Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by x-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1–S19CrossRefGoogle Scholar
  25. 25.
    Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116(4):2478–2601.  https://doi.org/10.1021/acs.chemrev.5b00484 CrossRefGoogle Scholar
  26. 26.
    Vogel L, Wonner P, Huber SM (2018) Chalcogen bonding: an overview. Angew Chem Int Ed.  https://doi.org/10.1002/anie.201809432 In press.Google Scholar
  27. 27.
    Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68(3):441–451.  https://doi.org/10.1021/j100785a001 CrossRefGoogle Scholar
  28. 28.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13(2):291–296.  https://doi.org/10.1007/s00894-006-0130-2 CrossRefGoogle Scholar
  29. 29.
    Noh J, Jung S, Koo DG, Kim G, Choi KS, Park J, Shin TJ, Yang C, Park J (2018) Thienoisoindigo-based semiconductor nanowires assembled with 2-bromobenzaldehyde via both halogen and chalcogen bonding. Sci Rep 8(1):14448.  https://doi.org/10.1038/s41598-018-32486-z CrossRefGoogle Scholar
  30. 30.
    Rybarczyk-Pirek AJ, Chęcińska L, Małecka M, Wojtulewski S (2013) Intermolecular interactions of trichloromethyl group in the crystal state, the case of 2-trichloromethyl-3H-4-quinazoline polymorphs and 1-methyl-2-trichloroacetylpyrrole–hirshfeld surface analysis of chlorine halogen bonding. Cryst Growth Des 13(9):3913–3924.  https://doi.org/10.1021/cg400584w CrossRefGoogle Scholar
  31. 31.
    Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2007) Engineering functional materials by halogen bonding. J Polym Sci Part A: Polym Chem 45(1):1–15.  https://doi.org/10.1002/pola.21725 CrossRefGoogle Scholar
  32. 32.
    Guo P, Paul A, Kumar A, Farahat AA, Kumar D, Wang S, Boykin DW, Wilson WD (2016) The thiophene “Sigma-Hole” as a concept for preorganized, specific recognition of G⋅C base pairs in the DNA minor groove. Chem A Eur J 22(43):15404–15412.  https://doi.org/10.1002/chem.201603422 CrossRefGoogle Scholar
  33. 33.
    Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56(4):1363–1388.  https://doi.org/10.1021/jm3012068 CrossRefGoogle Scholar
  34. 34.
    Cody V, Murray-Rust P (1984) Iodine⋯X(O, N, S) intermolecular contacts: models of thyroid hormone protein binding interactions using information from the cambridge crystallographic data files. J Mol Struct 112(3):189–199.  https://doi.org/10.1016/0022-2860(84)85061-9 CrossRefGoogle Scholar
  35. 35.
    Peluso P, Mamane V, Aubert E, Dessì A, Dallocchio R, Dore A, Pale P, Cossu S (2016) Insights into halogen bond-driven enantioseparations. J Chromatogr A 1467:228–238.  https://doi.org/10.1016/j.chroma.2016.06.007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryThe Pennsylvania State UniversityHazletonUSA
  2. 2.Department of ChemistryUniversity at BuffaloBuffaloUSA

Personalised recommendations