Construction of Meldonium (3-(1,1,1-Trimethylhydrazin-1-ium-2-yl)propanoate) Crystals: An X-ray View
Abstract
Zwitter-ions of 3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propanoate make head-to-tail dimers stabilized by N–H⋯O bonds; hydrogen bonding via water molecules results in an infinite chain (monohydrate, 1) or in a 3D network (dihydrate, 2). Hydrogen bonds in protonated form (2-(2-carboxyethyl)-1,1,1-trimethylhydrazinium) create an infinite chain (chloride, 3) or a 2D network (fumarate, 4). All these crystals are stabilized by weak C–H⋯A interactions. The crystallographic parameters at − 100 °C are as follows: 1: triclinic, space group P\(\stackrel{-}{1}\); a, b, c (Å): 7.3360(5), 8.0667(5), 8.9416(6); α = 99.752(4), β = 112.665(4), γ = 107.300(4)°,V = 441.32(5) Å3, Z = 2; 2: monoclinic, space group P21/c; a, b, c (Å): 6.8854(4), 11.2483(7), 12.8254(8), β = 105.339(2) °, V = 957.93(10) Å3, Z = 4; 3: monoclinic, space group P21/n; a, b, c (Å): 7.3625(4), 12.6486(7), 10.5211(6), β = 103.583(2)°, V = 952.38(9) Å3, Z = 4; 4: monoclinic, space group P21/c; a, b, c (Å): 6.3669(6), 29.516(3), 6.8145(7), β = 91.009(5) °, V = 1280.4(2) Å3, Z = 4. Structure 2 is practically identical to that already measured at room temperature.
Graphical Abstract
Keywords
Meldonium 3-(1,1,1-Trimethylhydrazin-1-ium-2-yl)propanoate 2-(2-Carboxyethyl)-1,1,1-trimethylhydrazinium Zwitter-ion Betaine Crystal structure Hydrogen bondsNotes
Acknowledgements
Financial support from the State University of New York for acquisition and maintenance of X-ray diffractometer is gratefully acknowledged.
Supplementary material
References
- 1.Giller SA, Eremeev AV, Kalvin’sh IY, Liepin’sh ÉÉ, Semenikhina VG (1975) Chem Heterocycl Compds 11:1378–1382CrossRefGoogle Scholar
- 2.Kalviņš I I, Stonāns I (2009) WO Patent, WO/2009/071586Google Scholar
- 3.Kalvins I, Liepins E, Loza E, Dambrova M, Stonans L, Lola D, Kuka J, Pugovics O, Vilskersts R, Grinberga S (2014) US Patent, US 20140088125 A1Google Scholar
- 4.Silva J (2013) Patent CA 2661357 C, 2013Google Scholar
- 5.Liepinsh E, Makarova E, Sevostjanovs E, Hartmane D, Cirule H, Zharkova-Malkova O, Grinberga S, Dambrova M (2017) Basic Clin Pharmacol Toxicol 120:450–456CrossRefGoogle Scholar
- 6.Dambrova M, Makrecka-Kuka M, Vilskersts R, Makarova E, Kuka J, Liepinsh E (2016) Pharmacol Res 113:771–780CrossRefGoogle Scholar
- 7.Schobersberger W, Dunnwald T, Blank C, Gmeiner G (2017) Br J Sports Med 51:22–25CrossRefGoogle Scholar
- 8.Goergens C, Guddat S, Dib J, Geyer H, Schaenzer W, Thevis M (2015) Drug Test Anal 27:973–979CrossRefGoogle Scholar
- 9.Slampova A, Kuban P (2016) J Chromatogr A 1468:236–240CrossRefGoogle Scholar
- 10.Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Cryst B72:171–179Google Scholar
- 11.Kemme A, Bleidelis J, Kalvinsh I, Eremeev A (1983) Latv PSR Zinat Akad Vestis 2:215–218Google Scholar
- 12.Zvirgzdins A, Veldre K, Actins A (2011) Latv J Chem 50:64–72Google Scholar
- 13.Berzins A, Actins A (2014) CrystEngComm 16:3926–3934CrossRefGoogle Scholar
- 14.Kitaigorodskii AI (1961) Organic Chemical Crystallography. Consultants Bureau, New YorkGoogle Scholar
- 15.Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2015) J Appl Cryst 48:3–10CrossRefGoogle Scholar
- 16.Sheldrick GM (2015) Acta Cryst A71:3–8 (2015)Google Scholar
- 17.Sheldrick GM (2015) Acta Cryst C71:9–18Google Scholar
- 18.Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341CrossRefGoogle Scholar
- 19.Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17, University of Western Australia. http://hirshfeldsurface.net; Accessed February 16, 2018
- 20.Jayatilaka D, Grimwood DJ (2003) Comput Sci 2660:142–151Google Scholar
- 21.Fischer MS, Templeton DH, Zalkin A (1970) Acta Cryst B26:1392–1397CrossRefGoogle Scholar
- 22.Tomita KI, Urabe K, Kim YB, Fujiwara T (1974) Bull Chem Soc Jpn 47:1988–1993CrossRefGoogle Scholar
- 23.Ng SW (2012) Acta Cryst E68:o1416Google Scholar
- 24.Haussuhl E, Schreuer J (2001) Z Kristallogr 216:616–620Google Scholar