Advertisement

Crystal and Molecular Structures of Five 3D Organic Salts from 2,6-Dimethylaniline and Organic Acids

  • Zuoran Xie
  • Yuan Lu
  • Shouwen JinEmail author
  • Haomiao Ye
  • Zhong Wang
  • Bin Liu
  • Daqi Wang
Original Paper

Abstract

Five crystalline organic acid-base salts [(HL)·(dnsa), L = 2,6-dimethylaniline, dnsa = 3,5-dinitrosalicylate] (1), [(HL+)·(4-Hnpta), 4-Hnpta = 4-nitrophthalate] (2), [(HL)2·(nds)·(H2O)2, nds = 1,5-naphthalenedisulfonate] (3), [(HL)·(dnb)·(Hdnb), dnb = 3,5-dinitrobenzoate, Hdnb = 3,5-dinitrobenzoic acid] (4) and [(HL)·(dca), dca = dichloroacetate] (5) from 2,6-dimethylaniline and organic acids were prepared and characterized by XRD analysis, IR, mp and elemental analysis. Compound 1 adopts the triclinic, space group Pī, with a = 7.6261(6) Å, b = 8.3429(8) Å, c = 13.1147(12) Å, α = 91.3610(10)º, β = 102.755(2)º, γ = 102.597(2)º, V = 791.96(12) Å3, Z = 2. Compound 2 belongs to the monoclinic, space group P2(1)/c, with a = 14.2552(15) Å, b = 8.1436(8) Å, c = 14.5708(13) Å, α = 90°, β = 113.795(2)º, γ = 90°, V = 1547.7(3) Å3, Z = 4. Compound 3 crystallizes in the monoclinic, space group P2(1)/c, with a = 8.4784(7) Å, b = 17.4798(15) Å, c = 9.1119(8) Å, α = 90°, β = 99.742(2)º, γ = 90°, V = 1330.9(2) Å3, Z = 2. Compound 4 has orthorhombic, space group Pna2(1), with a = 24.5029(19) Å, b = 7.5322(9) Å, c = 26.665(2) Å, α = 90°, β = 90°, γ = 90°, V = 4921.3(8) Å3, Z = 8. Compound 5 crystallizes in the monoclinic, space group C2/c, with a = 19.8970(17) Å, b = 11.1850(11) Å, c = 13.1590(12) Å, α = 90°, β = 123.408(3)º, γ = 90°, V = 2444.6(4) Å3, Z = 8. For 1 it was the relatively weak phenol that has ionized, different from 2 to 5. All supramolecular architectures of 15 involve N–H⋯O H-bonds as well as CH3⋯O interactions. The other noncovalent interactions (CH⋯O, CH⋯Cl, O⋯C, O⋯N, O⋯O, Cl⋯Cl, C⋯π, O⋯π, CH3⋯π and π⋯π) in the crystal packing were also ascertained. These weak interactions combined, all compounds displayed 3D framework structures.

Graphical Abstract

In the five prepared supramolecular assemblies there are plenty of weak bonding interactions such as directional H-bonds of N–H⋯O, O–H⋯O, O–H⋯S, O–H⋯N and noncovalent bonds of CH⋯O, CH3⋯O, CH⋯Cl, O⋯C, O⋯N, O⋯O, Cl–Cl, C⋯π, O⋯π, CH3⋯π, and aryl⋯aryl interactions. All compounds displayed the 3D framework structures

Keywords

Crystal structures H-bonding Noncovalent interactions 2,6-Dimethylaniline Organic acids 

Notes

Acknowledgements

This research was supported by the Open Fund of Zhejiang Provincial Top Key Discipline of Forestry Engineering under Grant No. 2014LYGCZ017.

Supplementary material

10870_2018_760_MOESM1_ESM.doc (144 kb)
Supplementary material 1 (DOC 143 KB)

References

  1. 1.
    Metrangolo P, Neukirch H, Pilati T, Resnatti G (2005) ACC Chem Res 38:386PubMedCrossRefGoogle Scholar
  2. 2.
    Britz DA, Khlobystov AN (2006) Chem Soc Rev 35:637PubMedCrossRefGoogle Scholar
  3. 3.
    Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629PubMedCrossRefGoogle Scholar
  4. 4.
    Steiner T (2002) Angew Chem Int Ed 41:48CrossRefGoogle Scholar
  5. 5.
    Kinbara K, Hashimoto Y, Sukegawa M, Nohira H, Saigo K (1996) J Am Chem Soc 118:3441CrossRefGoogle Scholar
  6. 6.
    Soldatov DV, Moudrakovski IL, Grachev EV, Ripmeester JA (2006) J Am Chem Soc 128:6737PubMedCrossRefGoogle Scholar
  7. 7.
    Seaton CC, Parkin A, Wilson CC, Bladen N (2009) Cryst Growth Des 9:47CrossRefGoogle Scholar
  8. 8.
    Bazuin CG, Brandys FA (1992) Chem Mater 4:970CrossRefGoogle Scholar
  9. 9.
    Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, OxfordCrossRefGoogle Scholar
  10. 10.
    Atwood JL, Steed JW (2004) Encyclopedia of supramolecular chemistry. Marcel Dekker, New YorkCrossRefGoogle Scholar
  11. 11.
    Steed JW, Atwood JL (2009) Supramolecular Chemistry, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  12. 12.
    MacDonald JC, Whitesides GM (1994) Chem Rev 94:2383CrossRefGoogle Scholar
  13. 13.
    Mu Z, Shu L, Fuchs H, Mayor M, Chi L (2008) J Am Chem Soc 130:10840PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Desiraju GR (2011) Angew Chem Int Ed Engl 50:52PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wang ZQ, Wang LY, Zhang X, Shen JC, Denzinger S, Ringsdorf H (1997) Macromol Chem Phys 198:573CrossRefGoogle Scholar
  16. 16.
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dhannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1619CrossRefGoogle Scholar
  17. 17.
    Görbitz CH, Nilsen M, Szeto K, Tangen LW (2005) Chem Commun 34:4288CrossRefGoogle Scholar
  18. 18.
    Du M, Zhang ZH, Guo W, Fu XJ (2009) Cryst Growth Des 9:1655CrossRefGoogle Scholar
  19. 19.
    Kodama K, Kobayashi Y, Saigo K (2007) Cryst Growth Des 7:935CrossRefGoogle Scholar
  20. 20.
    Braga D, Brammer L, Champness NR (2005) CrystEngComm 7:1CrossRefGoogle Scholar
  21. 21.
    Biradha K (2003) CrystEngComm 5:374CrossRefGoogle Scholar
  22. 22.
    Yao J, Chen JM, Xu YB, Lu TB (2014) Cryst Growth Des 14:5019CrossRefGoogle Scholar
  23. 23.
    Chen JM, Li S, Lu TB (2014) Cryst Growth Des 14:6399CrossRefGoogle Scholar
  24. 24.
    Wang ZZ, Chen JM, Lu TB (2012) Cryst Growth Des 12:4562CrossRefGoogle Scholar
  25. 25.
    Gould PJ (1986) Int J Pharm 33:201CrossRefGoogle Scholar
  26. 26.
    Geng N, Chen JM, Li ZJ, Jiang L, Lu TB (2013) Cryst Growth Des 13:3546CrossRefGoogle Scholar
  27. 27.
    Sanphui P, Devi VK, Clara D, Malviya N, Ganguly S, Desiraju GR (2015) Mol Pharm 12:1615PubMedCrossRefGoogle Scholar
  28. 28.
    Gu JK, Hill CL, Hu CW (2015) Cryst Growth Des 15:3707CrossRefGoogle Scholar
  29. 29.
    Schultheiss N, Lorimer K, Wolfe S, Desper J (2010) CrystEngComm 12:742CrossRefGoogle Scholar
  30. 30.
    Chow K, Tong HHY, Lum S, Chow AHL (2008) J Pharm Sci 97:2855PubMedCrossRefGoogle Scholar
  31. 31.
    Childs SL, Zaworotko MJ (2009) Cryst Growth Des 9:4208CrossRefGoogle Scholar
  32. 32.
    Rager T, Hilfiker R (2010) Cryst Growth Des 10:3237CrossRefGoogle Scholar
  33. 33.
    Zheng SL, Chen JM, Zhang WX, Lu TB (2011) Cryst Growth Des 11:466CrossRefGoogle Scholar
  34. 34.
    Tothadi S, Sanphui P, Desiraju GR (2014) Cryst Growth Des 14:5293CrossRefGoogle Scholar
  35. 35.
    Patra R, Titi HM, Goldberg I (2013) Cryst Growth Des 13:1342CrossRefGoogle Scholar
  36. 36.
    Aakeröy CB, Schultheiss NC, Rajbanshi A, Desper J, Moore C (2009) Cryst Growth Des 9:432PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gavezzotti A, Presti LL (2015) Cryst Growth Des 15:3792CrossRefGoogle Scholar
  38. 38.
    Das D, Jetti RKR, Boese R, Desiraju GR (2003) Cryst Growth Des 3:675CrossRefGoogle Scholar
  39. 39.
    Beyer T, Price SL (2000) J Phys Chem B 104:2647CrossRefGoogle Scholar
  40. 40.
    Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) J Am Chem Soc 121:1936CrossRefGoogle Scholar
  41. 41.
    Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1995) Angew Chem Int Ed Engl 34:2654CrossRefGoogle Scholar
  42. 42.
    Sanphui P, Bolla G, Das U, Mukherjee AK, Nangia A (2013) CrystEngComm 15:34CrossRefGoogle Scholar
  43. 43.
    Hursthouse MB, Montis R, Tizzard GJ (2011) CrystEngComm 13:3390CrossRefGoogle Scholar
  44. 44.
    Das D, Desiraju GR (2006) CrystEngComm 8:674CrossRefGoogle Scholar
  45. 45.
    Akiri K, Cherukuvada S, Rana S, Nangia A (2012) Cryst Growth Des 12:4567CrossRefGoogle Scholar
  46. 46.
    Thanigaimani K, Khalib NC, Temel E, Arshad S, Razak IA (2015) J Mol Struct 1099:246CrossRefGoogle Scholar
  47. 47.
    Men YB, Sun JL, Huang ZT, Zheng QY (2009) CrystEngComm 11:978CrossRefGoogle Scholar
  48. 48.
    Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15CrossRefGoogle Scholar
  49. 49.
    Lou BY, Perumalla SR, Sun CQC (2015) J Mol Struct 1099:516CrossRefGoogle Scholar
  50. 50.
    Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844CrossRefGoogle Scholar
  51. 51.
    Haynes DA, Pietersen LK (2008) CrystEngComm 10:518CrossRefGoogle Scholar
  52. 52.
    Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29CrossRefGoogle Scholar
  54. 54.
    Padmavathy R, Karthikeyan N, Sathya D, Jagan R, Kumar RM, Sivakumar K (2016) RSC Adv 6:68468CrossRefGoogle Scholar
  55. 55.
    Wu DH, Ge JZ, Cai HL, Zhang W, Xiong RG (2011) CrystEngComm 13:319CrossRefGoogle Scholar
  56. 56.
    Jones CL, Wilson CC, Thomas LH (2014) CrystEngComm 16:5849CrossRefGoogle Scholar
  57. 57.
    Sivakumar PK, Kumar MK, Kumar RM, Chakkaravarthi G, Kanagadurai R (2015) Acta Cryst E71:o163Google Scholar
  58. 58.
    Smirani W, Amri O, Rzaigui M (2008) Acta Cryst E64:o2463Google Scholar
  59. 59.
    Tang JJ, Chen J, Wang JT, Lu AH, Chen YS (2008) Acta Cryst E64:o244Google Scholar
  60. 60.
    Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87CrossRefGoogle Scholar
  61. 61.
    Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Polish J Chem 83:1937Google Scholar
  62. 62.
    Jin SW, Zhang WB, Liu L, Gao HF, Wang DQ, Chen RP, Xu XL (2010) J Mol Struct 975:128CrossRefGoogle Scholar
  63. 63.
    Jin SW, Zhang WB, Liu L, Wang DQ, He HD, Shi T, Lin F (2011) J Mol Struct 991:1CrossRefGoogle Scholar
  64. 64.
    Jin SW, Liu L, Wang DQ, Guo JZ (2011) J Mol Struct 1005:59CrossRefGoogle Scholar
  65. 65.
    Jin SW, Wang DQ, Wang XL, Guo M, Zhao QJ (2008) J Inorg Organomet Polym 18:300CrossRefGoogle Scholar
  66. 66.
    Bruker (2004) SMART and SAINT. Bruker AXS, MadisonGoogle Scholar
  67. 67.
    Sheldrick GM (2000) SHELXTL, Structure Determination Software Suite, version 6.14. Bruker AXS, MadisonGoogle Scholar
  68. 68.
    Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867CrossRefGoogle Scholar
  69. 69.
    Smith G, White JM (2001) Aust J Chem 54:97CrossRefGoogle Scholar
  70. 70.
    Jin SW, Guo M, Wang DQ (2012) J Mol Struct 1022:220CrossRefGoogle Scholar
  71. 71.
    Smith G, Wermuth UD, Healy PC (2005) Acta Cryst E61:o746Google Scholar
  72. 72.
    Smith G, Wermuth UD, Healy PC, White JM (2011) J Chem Crystallogr 41:1649CrossRefGoogle Scholar
  73. 73.
    Smith G, Wermuth UD (2014) Acta Cryst E70:430Google Scholar
  74. 74.
    Smith G, Wermuth UD, White JM (2001) Acta Cryst E57:o1036Google Scholar
  75. 75.
    Abid S, Hemissi H, Rzaigui M (2007) Acta Cryst E63:o3117Google Scholar
  76. 76.
    Wei SS, Jin SW, Hu ZF, Zhou Y, Zhou YP (2012) Acta Cryst E68:o3117Google Scholar
  77. 77.
    Smith G, Wermuth UD, White JM (2003) Acta Cryst E59:o1977Google Scholar
  78. 78.
    Jin SW, Zhang H, Zhao Y, Jin L, Ye XH, Liu H, Wang DQ (2015) J Mol Struct 1099:304CrossRefGoogle Scholar
  79. 79.
    Glidewell C, Low JN, Skakle JMS, Wardell JL (2005) Acta Cryst C61:o276Google Scholar
  80. 80.
    Dale SH, Elsegood MRJ, Hemmings M, Wilkinson AL (2004) CrystEngComm 6:207CrossRefGoogle Scholar
  81. 81.
    Wang YF (2012) Acta Cryst E68:o1619Google Scholar
  82. 82.
    Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555CrossRefGoogle Scholar
  83. 83.
    Sun W, Shan GZ (2015) Acta Cryst E71:o361Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zuoran Xie
    • 1
  • Yuan Lu
    • 1
  • Shouwen Jin
    • 1
    Email author
  • Haomiao Ye
    • 1
  • Zhong Wang
    • 1
  • Bin Liu
    • 1
  • Daqi Wang
    • 2
  1. 1.Jiyang College, ZheJiang A & F UniversityZhu’JiChina
  2. 2.Department of Chemical EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations