Advertisement

Synthesis, Crystal Structure, DFT Calculations and Hirshfeld Surface Analysis of 3-Chloro-3-methyl-r(2),c(6)-bis(p-methoxyphenyl)piperidin-4-one

  • R. Arulraj
  • S. SivakumarEmail author
  • K. Rajkumar
  • Jerry P. JasinskiEmail author
  • Manpreet Kaur
  • A. Thiruvalluvar
Original Paper

Abstract

The title compound, C20H22ClNO3, [common name: 3-chloro-3-methyl-r(2),c(6)-bis(p-methoxyphenyl)piperidin-4-one] crystallizes in the P21/c space group with unit cell parameters a = 13.4020(11) Å, b = 7.7888(5) Å and c = 18.1721(14) Å, β = 108.250(9)°, Z = 4. The central piperidin-4-one ring (N1/C1–C5), adopts a slightly distorted chair conformation and an equatorial orientation of all its substituents except for chlorine which is axially located. The dihedral angle between the mean planes of the two phenyl rings is 47.9(4)° and between the piperidin-4- one ring and pendant phenyl rings is 68.8(2)° (C6–C11) and 73.1(6)° (C13–C18), respectively. Crystal packing is stabilized by weak C–H⋯O intermolecular interactions forming chains along the b-axis. Additional weak Cg–π interactions between nearby phenyl rings are also observed. A comparison of these bond lengths and angles within the crystal with Density Functional Theory (DFT) geometry optimized calculations at the B3LYP/6-31+G (d) level has been determined. Hirshfeld surface analysis for determining the molecular shape and visually analyzing the intermolecular interactions in the crystal structure employing 3D molecular surface contours and 2D fingerprint plots gave enrichment ratios for H⋯H, O⋯H, Cl⋯H and C⋯H contacts compared to C–C, Cl⋯Cl and C⋯Cl contacts indicating a higher propensity for O–H interactions to form in this crystal. Electronic transitions have also been predicted by DFT Molecular Orbital calculations and compared to experimental absorption spectra. Molecular orbital diagrams provide visual representations of the top level molecular orbital surfaces in the compound.

Graphical Abstract

Synthesis, crystal structure, DFT geometry optimization and molecular orbital surface calculations and Hirshfeld surface analysis of a new heterocyclic 2,6-disubstituted piperidine-4-one compound.

Keywords

Piperidin-4-one Crystal structure Hydrogen bonds B3LYP 6-31 G(d) Molecular orbital surface Hirshfeld surface and fingerprint plots 

Notes

Acknowledgements

Authors would like to acknowledge Annamalai University for recording NMR. We extend our thanks to the Principal Dr. P. Kathirvel, Chairman Mr. R. Sattanathan and Treasurer Mr. T. Ramalingam of Thiruvalluvar Arts and Science College for giving permission to carry out research work in the Chemistry Laboratory. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

  1. 1.
    Ribeiro da Silva MAV, Cabral JITA (2007) J Therm Anal Calorim 90:865–871CrossRefGoogle Scholar
  2. 2.
    El-Subbagh HI, Abu-Zaid SM, Mahran MA, Badria FA, Al-obaid AM (2000) J Med Chem 43:2915–2921CrossRefGoogle Scholar
  3. 3.
    Mobio IG, Soldatenkov AT, Federov VO, Ageev EA, Sergeeva ND, Lin S, Stashenku EE, Prostakov NS, Andreeva EL (1989) Khim Farm Zh 23:421–427Google Scholar
  4. 4.
    Katritzky AR, Fan WJ (1990) J Org Chem 55:3205–3209CrossRefGoogle Scholar
  5. 5.
    Parthiban P, Balasubramanian S, Aridoss G, Kabilan S (2009) Bioorg Med Chem Lett 19:2981–2985CrossRefGoogle Scholar
  6. 6.
    Parthiban P, Pallela R, Kim SK, Park DH, Jeong YT (2011) Bioorg Med Chem Lett 21:6678–6686CrossRefGoogle Scholar
  7. 7.
    Casy A, Coates J, Rostron C (1976) J Pharm Pharmacol 28:110CrossRefGoogle Scholar
  8. 8.
    Ramachandran R, Parthiban P, Doddi A, Ramkumar V, Kabilan S (2007) Acta Cryst E63:o4559Google Scholar
  9. 9.
    Balamurugan S, Thiruvalluvar A, Butcher RJ, Manimekalai A, Jayabharathi J (2008) Acta Cryst E64:o59Google Scholar
  10. 10.
    Arulraj R, Sivakumar S, Thiruvalluvar A, Manimekalai A (2016) IUCrData, 1, x160188Google Scholar
  11. 11.
    Arulraj R, Sivakumar S, Kaur M, Thiruvalluvar A, Jasinski JP (2017) Acta Cryst E73:107–111Google Scholar
  12. 12.
    Thiruvalluvar A, Balamurugan S, Butcher RJ, Manimekalai A, Jayabharathi J (2007) Acta Cryst E63:o4533Google Scholar
  13. 13.
    Arulraj R, Sivakumar S, Thiruvalluvar A, Kaur M, Jasinski JP (2016) IUCrData, 1, x161580Google Scholar
  14. 14.
    Arulraj R, Sivakumar S, Thiruvalluvar A, Manimekalai A (2016) IUCrData, 1, x161982Google Scholar
  15. 15.
    Rigaku Oxford Diffraction (2014) CrysAlis PRO and CrysAlis RED. The Woodlands, TX, USAGoogle Scholar
  16. 16.
    Sheldrick GM (2015) Acta Cryst A71:3–8Google Scholar
  17. 17.
    Sheldrick GM (2015) Acta Cryst C71:3–8Google Scholar
  18. 18.
    Spek AL (2001) PLATON—a multipurpose crystallographic tool. Ultrecht University, UltrechtGoogle Scholar
  19. 19.
    Johnson CK (1976) ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, TN, USAGoogle Scholar
  20. 20.
    Schmidt JR, Polik WF (2007) WebMO Pro, version 8.0.01e; WebMO, LLc: Holland. http://www.webmo.net
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE,. Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RR, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford CT Gaussian 09,Revision D.01Google Scholar
  22. 22.
    Becke AD (1998) Phys Rev A38:3098Google Scholar
  23. 23.
    Lee C, Yang W, Parr RG (1988) Phys Rev B37:785CrossRefGoogle Scholar
  24. 24.
    Hehre WJ, Random L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  25. 25.
    Georgakopoulous S, Grondelle RV, Zwan GVD (2004) J Biophys 87:3010–3022CrossRefGoogle Scholar
  26. 26.
    Guzin A (2002) Turk J Chem 26:295–302Google Scholar
  27. 27.
    Pro IGOR (1988–2009) WaveMetrics, Lake Oswego, OregonGoogle Scholar
  28. 28.
    McKinnon JJ, Jayatilaka D, Spackman MA (2007) Chem Commun 37:3214Google Scholar
  29. 29.
    McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Cryst B 60:627CrossRefGoogle Scholar
  30. 30.
    Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer 17.5, University of Western Australia, http://hirshfeldsurface.net
  31. 31.
    Cremer D, Pople JA (1975) J Am Chem Soc 97:1354–1358CrossRefGoogle Scholar
  32. 32.
    Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1–S19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.Department of ChemistryThiruvalluvar Arts and Science CollegeKurinjipadiIndia
  3. 3.Department of ChemistryKeene State CollegeKeeneUSA
  4. 4.Kunthavai Naacchiyaar Government Arts College for Women (Autonomous)ThanjavurIndia

Personalised recommendations