Advertisement

Synthesis, Spectral Characterization and Crystal Structures of Dioxidomolybdenum(VI) Complexes Derived from Nicotinoylhydrazones

  • T. M. Asha
  • M. R. P. Kurup
Original Paper

Abstract

Cis-dioxidomolybdenum(VI) complexes [MoO2L1(DMSO)] (1), [MoO2L2(H2O)]·DMF (2) and [MoO2L3(DMF)] (3) were synthesized by solution based reactions of aroylhydrazones (H2L1 = 5-chloro-2-hydroxybenzaldehyde nicotinoylhydrazone, H2L2 = 2-hydroxy-5-iodobenzaldehyde nicotinoylhydrazone and H2L3 = 3,5-dichloro-2-hydroxybenzaldehyde nicotinoylhydrazone) with bis(acetylacetonato)dioxidomolybdenum(VI) complex, [MoO2(acac)2] in presence of DMSO or DMF. The synthesized aroylhydrazones and their molybdenum complexes were characterized by elemental analysis, spectroscopic techniques (FT-IR, UV–Vis, 1H NMR) and conductivity measurements. Finally the three dimensional structures of the complexes were confirmed by single crystal X-ray diffraction studies. Crystal structures of 1, 2 and 3 were solved by direct methods and refined with full-matrix least-squares calculations using the SHELXS97 and SHELXL2014 software programs respectively. Complex 1 got crystallized in monoclinic space group, P21/c with Z = 4, whereas complexes 2 and 3 in triclinic space group, P\(\overline {1}\) with Z = 2. The ligands, H2L1−3 showed coordination to the metal ion in a dibasic tridentate manner through deprotonated phenolate oxygen, azomethine nitrogen and enolate oxygen.

Graphical Abstract

All the three dioxidomolybdenum(VI) complexes exhibit a distorted octahedral geometry around molybdenum atom. ORTEP plot of [MoO2L2(H2O)]·DMF. (Displacement ellipsoids are drawn at 50% probability)

Keywords

Aroylhydrazones Molybdenum complexes X-ray diffraction studies Crystal structure Azomethinenitrogen 

Notes

Acknowledgements

The authors thank the Cochin University of Science and Technology, Kochi, India for financial assistance and thankful to the Sophisticated Analytical Instrumentation Facility, Cochin University of Science and Technology, Kochi, India for elemental ananlysis, 1H NMR and Single crystal X-ray diffraction measurements.

References

  1. 1.
    Rajan OA, Chakravorty A (1981) Inorg Chem 20:660CrossRefGoogle Scholar
  2. 2.
    Abu-Omar MM, Loaiza A, Hontzeas N (2005) Chem Rev 105:2227CrossRefPubMedGoogle Scholar
  3. 3.
    Topich J (1981) Inorg Chem 20:3704CrossRefGoogle Scholar
  4. 4.
    Judmaier ME, Holzer C, Volpe M, Mosch-Zanetti NC (2012) Inorg Chem 51:9956CrossRefPubMedGoogle Scholar
  5. 5.
    Maksimowski P, Skupinski W (1991) J Mol Catal 65:187CrossRefGoogle Scholar
  6. 6.
    Gusina L, Bulhac I, Dragancea D, Sinonov YA, Shova S (2011) Rev Roum Chim 56:133Google Scholar
  7. 7.
    Shylesh SP, Jia M, Seifert A, Adappa S, Ernst S, Thiel WR (2009) New J Chem 33:717CrossRefGoogle Scholar
  8. 8.
    Gago S, Neves P, Monteiro B, Pessego M, Lopes AD, Valente AA, Paz FAA, Pillinger M, Moreira J, Silva CM, Gonçalves IS (2009) Eur J Inorg Chem 4528Google Scholar
  9. 9.
    Neves P, Gago S, Pereira CCL, Figueiredo S, Lemos A, Lopes AD, Goncalves IS, Pillinger M, Silva CM, Valente AA (2009) Catal Lett 132:94CrossRefGoogle Scholar
  10. 10.
    Chai FL, Su HL, Wang XY, Tao JC (2009) Inorg Chim Acta 362:3840CrossRefGoogle Scholar
  11. 11.
    Bagherzadeh M, Tahsini L, Latifi R, Woo LK (2009) Inorg Chim Acta 362:3698CrossRefGoogle Scholar
  12. 12.
    Alonso JC, Neves P, da Silva MJPD, Quintal S, Vaz PD, Silva C, Valente AA, Ferreira P, Calhorda MJ, Felix V, Drew MGB (2007) Organometallics 26:5548CrossRefGoogle Scholar
  13. 13.
    Maiti SK, Dinda S, Gharah N, Bhattacharyya R (2006) New J Chem 30:479CrossRefGoogle Scholar
  14. 14.
    Maiti SK, Banerjee S, Mukherjee AK, Malik KMA, Bhattacharyya R (2005) New J Chem 29:554CrossRefGoogle Scholar
  15. 15.
    Iran S, Abdolreza R, Niaz M, Samira K (2009) Polyhedron 28:733CrossRefGoogle Scholar
  16. 16.
    Sigel A, Sigel H (2002) Met Ions Biol Syst 39:856Google Scholar
  17. 17.
    Hille R (1996) Chem Rev 96:2757CrossRefGoogle Scholar
  18. 18.
    Dinda R, Sengupta P, Ghosh S, Sheldrick WS (2003) Eur J Inorg Chem 363Google Scholar
  19. 19.
    Seena EB, Kurup MRP (2007) Polyhedron 26:3595CrossRefGoogle Scholar
  20. 20.
    Purohit S, Koley AP, Prasad LS, Manoharan PT, Ghosh S (1989) Inorg Chem 283:735Google Scholar
  21. 21.
    Dinda R, Ghosh S, Falvello LR, Tomas M, Mak TCW (2006) Polyhedron 25:2375CrossRefGoogle Scholar
  22. 22.
    Mathew N, Kurup MRP (2011) Spectrochim Acta Part A 78:1424CrossRefGoogle Scholar
  23. 23.
    Sudheer R, Sithambareshan M, Sajitha NR, Manoj E, Kurup MRP (2005) ActaCryst. E71:702Google Scholar
  24. 24.
    Aravindakshan AA, Joseph B, Kala UL, Kurup MRP (2017) Polyhedron 123:206CrossRefGoogle Scholar
  25. 25.
    SMART and SAINT, Area Detector Software Package and SAX Area Detector Integration Program, Bruker Analytical X-ray, Madison, 1997Google Scholar
  26. 26.
    SADABS, Area Detector Absorption Correction Program; Bruker Analytical Xray; Madison, 1997Google Scholar
  27. 27.
    Sheldrick GM (2015) Acta Crystallogr C 71:3CrossRefGoogle Scholar
  28. 28.
    Farrugia LJ (2012) J Appl Crystallogr 45:849CrossRefGoogle Scholar
  29. 29.
    Brandenburg K (2011) Diamond version 3.2 g. Crystal Impact GbRBonn, GermanyGoogle Scholar
  30. 30.
    Wang A, Craven BM (1979) J Pharm Sci 68:361CrossRefPubMedGoogle Scholar
  31. 31.
    Spackman MA, Byrom PG (1997) Chem Phys Lett 267:215CrossRefGoogle Scholar
  32. 32.
    Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19CrossRefGoogle Scholar
  33. 33.
    Seth SK, Sarkar D, Jana AD, Kar T (2011) Cryst Growth Des 11:4837CrossRefGoogle Scholar
  34. 34.
    Meyer AY (1986) Chem Soc Rev 15:449CrossRefGoogle Scholar
  35. 35.
    Devi PP, Kalaivania D (2016) Acta Cryst. E72:570Google Scholar
  36. 36.
    Wolff SK, Grimwood DJ, McKinnon JJ, Jayatilaka D, Spackman MA (2012) Crystal Explorer, Version 3.1 University of Western Australia, PerthGoogle Scholar
  37. 37.
    Kumara K, Shivalingegowda N, Mahadevaswamy LD, Kariyappa AK, Lokanath NK (2017) Chem Data Collect 9:251CrossRefGoogle Scholar
  38. 38.
    Kuriakose M, Kurup MRP, Suresh E (2007) Spectrochim Acta Part A 66:353CrossRefGoogle Scholar
  39. 39.
    Mangalam NA, Sivakumar S, Sheeja SR, Kurup MRP, Tiekink ERT (2009) Inorg Chim Acta 362:4191CrossRefGoogle Scholar
  40. 40.
    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, 5th edn. Wiley, New YorkGoogle Scholar
  41. 41.
    Maurya MR, Khurana S, Schulzke C, Rehder D (2001) Eur J Inorg Chem 779–788Google Scholar
  42. 42.
    Pasayat S, Dash SP, Saswati, Majhi PK, Patil YP, Nethaji M, Dash HR, Das S, Dinda R (2012) Polyhedron 38:198CrossRefGoogle Scholar
  43. 43.
    Bakir M, Brown O (2002) J Mol Struct 609:129CrossRefGoogle Scholar
  44. 44.
    Ebrahimipour SY, Khabazadeh H, Castro J, Sheikhshoaie I, Crochet A, Fromm KM (2015) Inorg Chim Acta 427:52CrossRefGoogle Scholar
  45. 45.
    Ding SB, Li WH (2013) J Coord Chem 66:2023CrossRefGoogle Scholar
  46. 46.
    Asha TM, Kurup MRP (2018) Inorg Chim Acta 483:44CrossRefGoogle Scholar
  47. 47.
    Ngan NK, Lo KM, Wong CSR (2011) Polyhedron 30:2922CrossRefGoogle Scholar
  48. 48.
    Ngan NK, Lo KM, Wong CSR (2012) Polyhedron 33:235CrossRefGoogle Scholar
  49. 49.
    Shoeili ZM, Zare M, Bagherzadeh M, Kubicki M, Davar MB (2015) J Coord Chem 68:548CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied ChemistryCochin University of Science and TechnologyKochiIndia
  2. 2.Department of Chemistry, School of Physical SciencesCentral University of KeralaKasaragodIndia

Personalised recommendations