Syntheses, Structural Characterization and Properties of Nickel(II) Coordination Polymer with 1,3,5-Tris(1H-pyrazol-3-yl)benzene and Succinic Acid

  • Yan-Ju HuangEmail author
  • Gang Du
  • Jun Zhang
Original Paper


The room-temperature reactions between N-donor ligands 1,3,5-Tris(1H-pyrazol-3-yl)benzene, nickel salts and Succinic acid in hydrothermal processing yielded one new coordination polymer, [Ni(H3tpb)2(Suc)]n⋅nH2O (H3tpb = 1,3,5-Tris(1H-pyrazol-3-yl)benzene, H2Suc = Succinic acid). The coordination polymer has been characterized using single-crystal X-ray diffraction and studied its infrared spectra, elemental analysis, photocatalysis analysis, powder X-ray diffraction analysis. The X-ray structural determination indicates that coordination polymer crystallizes in the monoclinic space group C2/c, with a = 25.929(5) Å, b = 17.831(4) Å, c = 17.717(4) Å, β = 124.65(3), V = 6738(3) Å3.

Graphical Abstract


Coordination polymer 1,3,5-Tris(1H-pyrazol-3-yl)benzene Nickel(II) Crystal structure 



Supported by National Natural Science Foundation of China (Item No. 21671003).


  1. 1.
    Peng YF, Zheng LY, Han SS, Li BL, Li HY (2014) Two zinc coordination polymers showing five-fold interpenetrated diamondoid network and 2D→3D inclined polycatenation motif. Inorg Chem Commun 44:41–45CrossRefGoogle Scholar
  2. 2.
    Du M, Li CP, Liu CS, Fang SM (2013) Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coord Chem Rev 257:1282–1305CrossRefGoogle Scholar
  3. 3.
    Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674CrossRefGoogle Scholar
  4. 4.
    Pan M, Lin XM, Li GB, Su CY (2011) Progress in the study of metal–organic materials applying naphthalene diimide (NDI) ligands. Coord Chem Rev 255:1921–1936CrossRefGoogle Scholar
  5. 5.
    Cui YJ, Yue YF, Qian GD, Chen BL (2012) Luminescent functional metal–organic frameworks. Chem Rev 112:1126–1162CrossRefGoogle Scholar
  6. 6.
    Zhang LY, Liu Y, Li K, Pan M, Yan C, Wei SC, Chen YX, Su CY (2013) Formation of 0D M5L2 helicate cage and 1D loop-and-chain complexes: stepwise assembly and catalytic activity. CrystEngComm 15:7106–7112CrossRefGoogle Scholar
  7. 7.
    Wang SJ, Li L, Zhang JY, Yuan XC, Su CY (2011) Anion-tuned sorption and catalytic properties of a soft metal–organic solid with polycatenated frameworks. J Mater Chem 21:7098–7104CrossRefGoogle Scholar
  8. 8.
    Li M, Zhao S, Peng YF, Li BL, Li HY (2013) A polythreading array formed by a (3,5)-connected 3D anionic network and 1D cationic chains: synthesis, structure, and catalytic properties. Dalton Trans 42:9771–9776CrossRefGoogle Scholar
  9. 9.
    Xiao SL, Liu YG, Qin L, Cui GH (2013) A hexanuclear CuII-based coordination framework with non-interpenetrated α-Po topology displaying catalytic activity. Inorg Chem Commun 36:220–223CrossRefGoogle Scholar
  10. 10.
    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943CrossRefGoogle Scholar
  11. 11.
    Murray LJ, Dincă M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38:1294–1314CrossRefGoogle Scholar
  12. 12.
    Liao PQ, Zhou DD, Zhu AX, Jiang L, Lin RB, Zhang JP, Chen XM (2012) Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws. J Am Chem Soc 134:17380–17383CrossRefGoogle Scholar
  13. 13.
    Fu L, Liu Y, Pan M, Kuang XJ, Yan C, Li K, Wei SC, Su CY (2013) Accumulation of versatile iodine species by a porous hydrogen-bonding Cu(II) coordination framework. J Mater Chem A 1:8575–8580CrossRefGoogle Scholar
  14. 14.
    Chen BL, Xiang SC, Qian GD (2010) Metal–organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124CrossRefGoogle Scholar
  15. 15.
    Huang HW, Chen G, Zhang YH (2014) Two Bi-based phosphate photocatalysts: crystal structure, optical property and photocatalytic activity. Inorg Chem Commun 44:46–49CrossRefGoogle Scholar
  16. 16.
    Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075CrossRefGoogle Scholar
  17. 17.
    Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefGoogle Scholar
  18. 18.
    Feng ND, Wang Q, Zheng AM, Zhang ZF, Fan J, Liu SB, Amoureux JP, Deng F (2013) Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J Am Chem Soc 135:1607–1616CrossRefGoogle Scholar
  19. 19.
    Tong H, Ouyang SX, Bi YP, Umezawa N, Oshikiri M, Ye JH (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251CrossRefGoogle Scholar
  20. 20.
    Astakhov AV, Khazipov OV, Degtyareva ES, Khrustalev VN, Chernyshev VM, Ananikov VP (2015) Facile hydrolysis of nickel(II) complexes with N-heterocyclic carbene ligands. Organometallics 34:5759–5766CrossRefGoogle Scholar
  21. 21.
    Cui JW, Hou SX, Hecke KV, Cui GH (2017) Rigid versus semi-rigid bis(imidazole) ligands in the assembly of two Co(II) coordination polymers: structural variability, electrochemical properties and photocatalytic behavior. Dalton Trans 46:2892–2903CrossRefGoogle Scholar
  22. 22.
    Cui JW, Hou SX, Li YH, Cui GH (2017) A multifunctional Ni(II) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst. Dalton Trans 46:16911–16924CrossRefGoogle Scholar
  23. 23.
    Li JX, Qin ZB, Li YH, Cui GH (2018) Sonochemical synthesis and properties of two new nanostructured silver(I) coordination polymers. Ultrason Sonochem 48:127–135CrossRefGoogle Scholar
  24. 24.
    Huang YJ, Pan YR, Du G, Xuan Y (2017) Syntheses, crystal structure determinations of two-dimensional main-group p-block metal lead(II) complexes. Polyhedron. 127:212–216CrossRefGoogle Scholar
  25. 25.
    Pleier AK, Glas H, Grosche M, Sirsch P, Thiel WR (2001) Microwave assisted synthesis of 1-aryl-3-dimethylaminoprop-2-enones: a simple and rapid access to 3(5)-arylpyrazoles. Synthesis 1:55–62CrossRefGoogle Scholar
  26. 26.
    Zhao WX, Gao YX, Dong SF, Lia Y, Zhang WP (2007) 1,3,5-Tris(1H-pyrazol-3-yl)benzene. Acta Cryst Sect E E63:o3448CrossRefGoogle Scholar
  27. 27.
    Sheldrick GM (2015) Acta Cryst Sect A 71:3–8CrossRefGoogle Scholar
  28. 28.
    Spek AL (2009) Acta Cryst D65:148–155Google Scholar
  29. 29.
    Spek AL (2003) J Appl Cryst 36:7–13CrossRefGoogle Scholar
  30. 30.
    Müller R, Herbst-Irmer R, Spek AL, Schneider TR, Sawaya MR (2006) Crystal structure refinement. Oxford University Press, OxfordCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryTonghua Normal UniversityTonghuaPeople’s Republic of China
  2. 2.Tonghua’s No. 1 Middle SchoolTonghuaPeople’s Republic of China
  3. 3.Department of Materials and Chemical EngineeringAnhui Jianzhu UniversityHefeiPeople’s Republic of China

Personalised recommendations