Advertisement

N-Valine-2-(3,5-dimethy-1,1-dioxido-2H-1,2,6-thiadiazin-4-yl)Benzamide: Synthesis, X-ray Structure and Hirshfeld Surface Analysis

  • Marivel Samipillai
  • Nilay Bhatt
  • Pralav Bhatt
  • Thavendran Govender
  • Hendrick G. Kruger
  • Glenn E. M. Maguire
Original Paper

Abstract

Here we report the synthesis and crystal structure of the title compound N-valine-2-(3,5-dimethy-1,1-dioxido-2H-1,2,6-thiadiazin-4-yl)benzamide, C18H23N3O5S. The structure was determined by the single crystal X-ray diffraction method. The compound crystallized in a monoclinic Sohncke space C2 space group with cell values of a = 18.3096 (11) Å, b = 7.4858 (5) Å, c = 14.1452 (10) Å, β = 90.176 (2)° and with Z = 4. Crystal structure analysis showed that the molecule is not planar and the thiadiazine ring is essentially orthogonal to the plane passing through the aromatic ring. The dihedral angle between the thiadiazine ring and the aromatic ring is 93.72°. The carbonyl of the amide bond deviates from co-planarity of the aromatic ring by 60.03° which is perhaps due to the steric hindrance of the carbonyl group towards the thiadiazine ring. The sulfur atom deviates from the mean plane of the ring by 0.102 Å.

Graphical Abstract

The synthesis of the title compound, N-valine-2-(3,5-dimethy-1,1-dioxido-2H-1,2,6-thiadiazin-4-yl)benzamide, and its structural characterization by means of single crystal X-ray diffraction and Hirshfeld surface analysis are reported.

Keywords

S,S-dioxides Thiadiazine Valine derivative X-ray structure Hirshfeld analysis 

Notes

Acknowledgements

The authors wish to thank Dr Hong Su from the University of Cape Town for assistance with the data collection and refinement.

References

  1. 1.
    Reitz AB, Smith GR, Parker MH (2009) Expert Opin Ther 19:1449–1453CrossRefGoogle Scholar
  2. 2.
    Yanagisawa Y, Hirata Y, Ishii Y (1987) J Med Chem 30:1787–1793CrossRefGoogle Scholar
  3. 3.
    Alkorta I, Goya P, Nombela C, Medina R, Perez Martin C (1991) Arzneimittelforschung 41:264–274PubMedGoogle Scholar
  4. 4.
    Hamprecht G, KoÉnig K–H, Stubenrauch G (1981) Angew Chem 93:151–164CrossRefGoogle Scholar
  5. 5.
    Newton TW (1994) EP 54:9079–9083Google Scholar
  6. 6.
    Goya P, Nieves R, Ochoa C (1984) Rev Acad Cienc Exactas, Fis Nat Madrid 78:373Google Scholar
  7. 7.
    Wright JB (1964) J Org Chem 29:1905–1909CrossRefGoogle Scholar
  8. 8.
    Ochoa C, Stud MJ (1978) Het Chem 15:221–224CrossRefGoogle Scholar
  9. 9.
    Aran VJ, Bielsa AG, Goya P, Ochoa C, Pae JA, Stud M, Contreras M, Escario JA, Jimenez MI (1986) Farmaco 41:863–872Google Scholar
  10. 10.
    Herrero A, Ochoa C, Atienza J, Escario JA, Gomez BA, Martinez FAR (1992) Arch Pharm 325:509–514CrossRefGoogle Scholar
  11. 11.
    Breining T, Cimpoia AR, Mansour TS, Cammack N, Hopewell P, Ashman C (1995) Heterocycles 41:87–94CrossRefGoogle Scholar
  12. 12.
    Campillo N, Garcia C, Goya P, Alkorta I, Juan A (2000) J Med Chem 43:4219–4227CrossRefGoogle Scholar
  13. 13.
    Elguero J, Carmen O, Manfred S, Estaben CC, Martinez RM, Fayet JP, Vertut MC (1982) J Org Chem 47:536–544CrossRefGoogle Scholar
  14. 14.
    Bhatt N, Bhatt P, Govender T, Kruger HG, Maguire GEM (2012) Acta Cryst E 68:o2859CrossRefGoogle Scholar
  15. 15.
    Bhatt N, Bhatt P, Govender T, Kruger HG, Maguire GEM (2012) Acta Cryst E 68:o3360CrossRefGoogle Scholar
  16. 16.
    Bhatt N, Bhatt P, Vyas KB, Nimavat K, Govender T, Kruger HG, Maguire GEM (2012) Acta Cryst E 68:o2160CrossRefGoogle Scholar
  17. 17.
    Bhatt N, Bhatt P, Nimavat K, Govender T, Kruger HG, Maguire GEM (2014) Z Kristallogr NCS 229:51–52Google Scholar
  18. 18.
    Bhatt N, Bhatt P, Nimavat K, Govender T, Kruger HG, Maguire GEM (2013) Z Kristallogr NCS 228:469–470Google Scholar
  19. 19.
    Bhatt N, Bhatt P, Nimavat K, Govender T, Kruger HG, Maguire GEM (2014) Z Kristallogr NCS 229:49–50Google Scholar
  20. 20.
    Bruker SAINT AXS Inc., Madison, WisconsinGoogle Scholar
  21. 21.
    XPREP, Ver. 5.1/NT, Bruker AXS Inc., 1997Google Scholar
  22. 22.
    Sheldrick GM (1997) SHELXL–97: program for the refinement of crystal structures. University of Göttingen, GöttingenGoogle Scholar
  23. 23.
    Sheldrick GM (2014) SHELXL–2014/7: program for X-ray crystal structure determination. Göttingen University, GöttingenGoogle Scholar
  24. 24.
    Barbour LJ (2001) J Supramol Chem 1:189–191CrossRefGoogle Scholar
  25. 25.
    Mercury 3.1 (2009) Supplied with Cambridge Structural Database CCDC: Cambridge UKGoogle Scholar
  26. 26.
    Farrugia LJ, ORTEP-3 (2012) J Appl Crystallogr 45:849–854CrossRefGoogle Scholar
  27. 27.
    Etter MC, MacDonald JC, Bernstein J (1990) Acta Cryst B 46:256–262CrossRefGoogle Scholar
  28. 28.
    Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2010) CrystalExplorer (Version 3.1). University of Western Australia, CrawleyGoogle Scholar
  29. 29.
    Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32CrossRefGoogle Scholar
  30. 30.
    Turner MJ, McKinnon JJ, Jayatilaka D, Spackman MA (2011) CrystEngComm 13:1804–1813CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marivel Samipillai
    • 1
  • Nilay Bhatt
    • 1
  • Pralav Bhatt
    • 1
  • Thavendran Govender
    • 1
  • Hendrick G. Kruger
    • 1
  • Glenn E. M. Maguire
    • 2
  1. 1.Catalysis and Peptide Research Unit, School of Health SciencesUniversity of KwaZulu–NatalDurbanSouth Africa
  2. 2.School of Chemistry and PhysicsUniversity of KwaZulu–NatalDurbanSouth Africa

Personalised recommendations