Advertisement

Journal of Chemical Crystallography

, Volume 48, Issue 3, pp 91–95 | Cite as

Crystal Structure of Ethyl 2,4-Dimethyl-1-phenyl-6-thioxo-1,6-dihydropyrimidine-5-carboxylate: The Product from the Reaction of Ethyl 3-Aminocrotonate, Phenylisothiocyanate and Acetic Anhydride

  • Peter J. Cossar
  • Cecilia C. Russell
  • Siobhann N. McCluskey
  • Dylan Pope
  • Paul V. Bernhardt
  • Adam McCluskey
Original Paper

Abstract

The crystal structure of ethyl 2,4-dimethyl-1-phenyl-6-thioxo-1,6-dihydropyrimidine-5-carboxylate (7) has been determined (monoclinic, P21/n, a 12.5543(9); b 7.6345(4); c 16.1568(14) Å, β 107.210(9)°) revealing a thioamide functional group instead of the thiazine ethyl (Z)-2,4-dimethyl-6-(phenylimino)-6H-1,3-thiazine-5-carboxylate (5) proposed previously. This has required the revision of the published structure for this multicomponent reaction which now has identified (7), not (5), as the product, supported by NMR and IR analysis.

Graphical Abstract

The crystal structure of the major product from the reaction of ethyl 3-aminocrotonate, phenylisothiocyanate and acetic anhydride is ethyl 2,4-dimethyl-1-phenyl-6-thioxo-1,6-dihydropyrimidine-5-carboxylate (shown), not the previously identified ethyl (Z)-2,4-dimethyl-6-(phenylimino)-6H-1,3-thiazine-5-carboxylate.

Keywords

Multicomponent reaction Thiazine Dihydropyrimidine Structure revision 

Notes

Acknowledgements

The authors acknowledge the financial support of the Australian Research Council, the Australian Cancer Research and Ramaciotti Foundations.

Supplementary material

10870_2018_714_MOESM1_ESM.pdf (110 kb)
Supplementary material 1 (PDF 110 KB)

References

  1. 1.
    Walters WP, Green J, Weiss JR, Murcko MA (2011) J Med Chem 54:6405CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Roughley SD, Jordan AM (2011) J Med Chem 54:3451CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cioc RC, Ruijter E, Orru RVA (2014) Green Chem 16:2958CrossRefGoogle Scholar
  4. 4.
    Brauch S, van Berkel SS, Westermann B (2013) Chem Soc Rev 42:4948CrossRefPubMedGoogle Scholar
  5. 5.
    Dömling A, Wang K, Wang W (2012) Chem Rev 112:3083CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Clémençon IF, Ganem B (2007) Tetrahedron 63:8665CrossRefGoogle Scholar
  7. 7.
    Hantzsch A (1882) Justus Liebigs Ann Chem 215:1CrossRefGoogle Scholar
  8. 8.
    Hulme C, Dietrich J (2009) Mol Divers 13:195CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dömling A, Wang W, Wang K (2012) Chem Rev 112:3083CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Slobbe P, Ruijter E, Orru RVA (2012) MedChemComm 3:1189CrossRefGoogle Scholar
  11. 11.
    Ozaki S (1972) Chem Rev 72:457CrossRefGoogle Scholar
  12. 12.
    Sharma S (1989) Sulfur Rep 8:327CrossRefGoogle Scholar
  13. 13.
    Mukerjee AK, Ashare R (1991) Chem Rev 91:1CrossRefGoogle Scholar
  14. 14.
    Avalos M, Bablano R, Cintas P, Jimenez JL, Palacios JC (1992) Heterocycles 33:973CrossRefGoogle Scholar
  15. 15.
    Nedolya NA, Trofimov BA, Senning A (1996) Sulfur Rep 17:183CrossRefGoogle Scholar
  16. 16.
    Bedane KG, Singh GS (2015) Arkivoc vi:206Google Scholar
  17. 17.
    Ranjan A, Mandal A, Yerande SG, Dethe DH (2015) Chem Commun 51:14215CrossRefGoogle Scholar
  18. 18.
    Martinez-Ariza G, Ayaz M, Medda F, Hulme C (2014) J Org Chem 79:5153CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vugts DJ, Koningstein MM, Schmitz RF, de Kanter FJJ, Groen MB, Orru RVA (2006) Chem Eur J 12:7178CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rostami-Charati F, Hassankhani A, Hossaini Z (2012) Comb Chem High Throughput Screen 15:822CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jalani HB, Kaila JC, Baraiya AB, Pandya AN, Sudarsanam V, Vasu KK (2010) Tetrahedron Lett 51:5686CrossRefGoogle Scholar
  22. 22.
    Trinh TN, McCluskey A (2016) Tetrahedron Lett 57:3256CrossRefGoogle Scholar
  23. 23.
    Sheldrick GM (2008) Acta Crystallogr A A64:112–122CrossRefGoogle Scholar
  24. 24.
    Farrugia LJ (1997) J Appl Crystallogr 30:565CrossRefGoogle Scholar
  25. 25.
    Farrugia LJ (1999) J Appl Crystallogr 32:837CrossRefGoogle Scholar
  26. 26.
    Trinh TN, McLaughlin EA, Gordon CP, McCluskey A (2014) Med Chem Commun 5:117–133CrossRefGoogle Scholar
  27. 27.
    von Kleist L, Stahlschmidt W, Bulut H, Gromova K, Puchkov D, Robertson MJ, MacGregor KA, Tomlin N, Pechstein A, Chau N, Chircop M, Sakoff JA, von Kries J, Saenger W, Kräusslich H-G, Shupliakov O, Robinson PJ, McCluskey A, Haucke V (2011) Cell 146:471CrossRefGoogle Scholar
  28. 28.
    Harper CB, Popoff MR, McCluskey A, Robinson PJ, Meunier FA (2013) Trends Cell Biol 23:90CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cunha S, Bastos RM, de O Silva, Costa P, Vencato GAN, Lariucci I, Napolitano C, de Oliveira HB, Kato CMA, da Silva L, Menezes CC, Vannier-Santos D MA (2007) Monatsh Chem 138:111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry, School of Environmental and Life SciencesUniversity of NewcastleCallaghanAustralia
  2. 2.School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia

Personalised recommendations