Journal of Chemical Crystallography

, Volume 48, Issue 3, pp 73–77 | Cite as

Two Novel Coordination Polymers Based on Semi-rigid Tetrapyridine Fine-Tuned by Different Carboxylates

  • Xin Xiong
  • Ke-xin Huang
  • Meng Zhang
  • Yu-dan Hao
  • Fan YuEmail author
  • Bao LiEmail author
Original Paper


By utilizing the flexible quadritopic ligand, tetrakis(3-pyridyloxymethyl)methane (L), two novel coordination polymers have been synthesized and structurally characterized. {[Cu3(L)2(acetate)6]·10(H2O)}n has a 1D chain crystal structure with a SP 2-periodic net with the Schläfli symbol {36·46·53} modeled by acetate ions. In {[Cu2(L)(benzoate)4]·2(CH3OH)·H2O}n, we substituted the acetate with benzoate and obtained 2D crystal structure with an novel 2, 3, 4 net with the Schläfli symbol {4·82}2{42·82·102}{8}. The structural results show that utilizing a flexible ligand is a good approach to achieve diversity in coordination polymer structures and could be easily affected by the carboxylate anions.

Graphical Abstract

Two novel coordination polymers assembled from the tetrakis(3-pyridyloxymethylene) methane(L) with copper(II) ions and different carboxylate. Crystal structures and topological analyses of these compounds are presented.


Copper Flexible Coordination polymer Crystal structure 



We gratefully acknowledge the National Natural Science Foundation of China (No. 51403079) for generous financial support.

Supplementary material

10870_2018_707_MOESM1_ESM.pdf (170 kb)
Supplementary material 1 (PDF 169 KB)
10870_2018_707_MOESM2_ESM.pdf (215 kb)
Supplementary material 2 (PDF 214 KB)


  1. 1.
    Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Chem Soc Rev 38:1330–1352CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barnett SA, Champness NR (2003) Coord Chem Rev 246:145–168CrossRefGoogle Scholar
  3. 3.
    Binnemans K (2009) Chem Rev 109:4283–4374CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boden BN, Jardine KJ, Leung ACW, MacLachlan MJ (2006) Org Lett 8:1855–1858CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341:123044CrossRefGoogle Scholar
  6. 6.
    Hu JS, Shang YJ, Yao XQ, Qin L, Li YZ, Guo ZJ, Zheng HG, Xue ZL (2010) Cryst Growth Des 10:2676–2684CrossRefGoogle Scholar
  7. 7.
    Liang LL, Ren SB, Zhang J, Li YZ, Du HB, You XZ (2010) Cryst Growth Des 10:1307–1311CrossRefGoogle Scholar
  8. 8.
    Li B, Chen LQ, Wei RJ, Tao J, Huang RB, Zheng LS, Zheng Z (2011) Inorg Chem 50:424–426CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li B, Leng K, Zhang Y, Dynes JJ, Wang J, Hu Y, Ma D, Shi Z, Zhu L, Zhang D, Sun Y, Chrzanowski M, Ma S (2015) J Am Chem Soc 137:4243 – 4248CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu L, Ding J, Huang C, Li M, Hou H-W, Fan Y-T (2014) Cryst Growth Des 14:3035–3043CrossRefGoogle Scholar
  11. 11.
    Koh K, Wong-Foy AG, Matzger AJ (2008) Angew Chem Int Ed 47:677–680CrossRefGoogle Scholar
  12. 12.
    Zhou HL, Zhang Y-B, Zhang J-P, Chen X-M (2015) Nat Commun 6:6917CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu F, Kozlevcar B, Strauch P, Zhuang G, Guo L, Wang Z, Sun D (2015) Chem Eur J 21:18847CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li X, Su H, Zhou R, Feng S, Tan Y, Wang X, Jia J, Kurmoo M, Sun D, Zheng L (2016) Chem Eur J 22:3019CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhuo H, Su H, Cao Z, Liu W, Wang S, Feng L, Zhuang G, Lin S, Kurmoo M, Tung C, Sun D, Zheng L (2016) Chem Eur J 22:17619CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Deng Y, Su H, Xu J, Wang W, Kurmoo M, Lin S, Tan Y, Jia J, Sun D, Zheng L (2016) J Am Chem Soc 138:1328CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou HC, Kitagawa S (2014) Chem Soc Rev 43:5415–5418CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang C, Liu D, Lin W (2013) J Am Chem Soc 135:13222–13234CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang F, Liu Z-S, Yang H, Tan Y-X, Zhang J (2011) Angew Chem Int Ed 50:450–453CrossRefGoogle Scholar
  20. 20.
    Wen L-L, Zhao J-B, Lv K-L, Wu Y-H, Deng K-J, Leng X-K, Li D-F (2012) Cryst Growth Des 12:1603–1612CrossRefGoogle Scholar
  21. 21.
    Yu F, Li B (2011) CrystEngComm 13:7025–7031CrossRefGoogle Scholar
  22. 22.
    Yu F, Li B (2012) CrystEngComm 14:6049–6054CrossRefGoogle Scholar
  23. 23.
    Yu F, Yu W, Li B, Zhang T (2012) CrystEngComm 14:6770–6777CrossRefGoogle Scholar
  24. 24.
    Yu F, Xiang M, Li A, Zhang Y, Li B (2015) CrystEngComm 17:1556–1563CrossRefGoogle Scholar
  25. 25.
    Blatov VA (2006) IUCr CompComm Newsl 7:4–38Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemistry and Environmental EngineeringJianghan UniversityWuhanPeople’s Republic of China
  2. 2.Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations