Advertisement

Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles

  • Qurat-ul-Ain Naqvi
  • Amber Kanwal
  • S. Qaseem
  • M. NaeemEmail author
  • S. Rizwan Ali
  • M. Shaffique
  • M. Maqbool
Original Paper

Abstract

The antibacterial effect of ZnO nanoparticles is tested against Staphylococcus aureus, (a Gram-positive pathogenic bacterium) from a particle-size, concentration, and surface-defects point of view. Activation of antibacterial activity was achieved by standard well diffusion agar and minimum inhibitory concentration procedures. Our results show that smaller-sized particles are more effective inhibitors of bacterial activity when used in a certain optimum concentration. To reveal the underlying mechanism of the observed size and concentration-dependent bacterial activity inhibition, we measured the concentrations of Zn2+ ions released in each suspension by an inductive couple plasma optical emission spectrophotometer. Additionally, photoluminance spectra of our samples show significant surface defects (mainly oxygen vacancies) that generate reactive oxygen species. The underlying mechanism of the observed size- and concentration-dependent bacterial activity inhibition is attributed primarily to the release of Zn2+ ions and generation of reactive oxygen species that interact and penetrate the cell membrane, causing lethal damage to the cell. Finally, the antibacterial effectiveness and maximum sensitivity of our nanoparticles is confirmed by optical density measurements.

Keywords

Zinc oxide Reactive oxygen species ROS Zn2+ ion release Antibacterial activity mechanism Nanoparticles 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Williams, M.H., Stephen, A.: Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ. Pollut. 172, 76–85 (2013).  https://doi.org/10.1016/j.envpol.2012.08.011 CrossRefGoogle Scholar
  2. 2.
    Titiwat, F., Triampo, W.: The effects of TiO2 nanoparticles on tumor cell colonies: fractal dimension and morphological properties. Int. J. Biomed. Sci. 2, 67–74 (2007)Google Scholar
  3. 3.
    Koehn, F.E., Carter, G.T.: The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206–220 (2005).  https://doi.org/10.1038/nrd1657 CrossRefGoogle Scholar
  4. 4.
    Nagarajan, P., Vijayaraghavan, R.: Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9, 035004 (2008).  https://doi.org/10.1088/1468-6996/9/3/035004 CrossRefGoogle Scholar
  5. 5.
    Reddy Yadav, L.S., Raghavendra, M., Udayabhanu, Manjunath, K., Nagaraju, G.: Photocatalytic, biodiesel, electrochemical sensing properties and formylation reactions of ZnO nanoparticles synthesized via ecofriendly green synthesis method. J. Mater. Sci. Mater. Electron. 29, 8747–8759 (2018).  https://doi.org/10.1007/s10854-018-8891-9 CrossRefGoogle Scholar
  6. 6.
    Reddy Yadav, L.S., Raghavendra, M., Sudheer Kumar, K.H., Dhananjaya, N., Nagaraju, G.: Biosynthesised ZnO: Dy3+ nanoparticles: biodiesel properties and reusable catalyst for N-formylation of aromatic amines with formic acid. Eur. Phys. J. Plus 133, 153 (2018).  https://doi.org/10.1140/epjp/i2018-11963-6
  7. 7.
    Pasquet, J., Chevalier, Y., Couval, E., Bouvier, D., Noizet, G., Morlière, C., Bolzinger, M.A.: Antimicrobial activity of zinc oxide particles on five micro-organisms of the challenge tests related to their physicochemical properties. Int. J. Pharm. 460, 92–100 (2014).  https://doi.org/10.1016/j.ijpharm.2013.10.031 CrossRefGoogle Scholar
  8. 8.
    Yamamoto, O.: Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643–646 (2001).  https://doi.org/10.1016/S1466-6049(01)00197-0 CrossRefGoogle Scholar
  9. 9.
    Wang, J., Chen, R., Xiang, L., Komarneni, S.: Synthesis properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram. Int. 44, 7357–7377 (2018).  https://doi.org/10.1016/j.ceramint.2018.02.013 CrossRefGoogle Scholar
  10. 10.
    Moussa, H., Merlin, C., Dezanet, C., Balan, L., Medjahdi, G., Ben-Attia, M., Schneider, R.: Trace amounts of Cu2+ ions influence ROS production and cytotoxicity of ZnO quantum dots. J. Hazard. Mater. 304, 532–542 (2015).  https://doi.org/10.1016/j.jhazmat.2015.11.013 CrossRefGoogle Scholar
  11. 11.
    Jin, T., Sun, D., Su, Y., Zhang, H., Sue, H.J.: Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7. J. Food Sci. 74, 46–52 (2009).  https://doi.org/10.1111/j.1750-3841.2008.01013.x CrossRefGoogle Scholar
  12. 12.
    Shah, S.N., Ali, S.I., Ali, S.R., Naeem, M., Bibi, Y., Ali, S.R., Raza, S.M., Khan, Y., Sherwani, S.K.: Synthesis and characterization of zinc oxide nanoparticles for antibacterial applications. J.. Basic Appl. Sci. 12, 205–210 (2016).  https://doi.org/10.6000/1927-5129.2016.12.31 CrossRefGoogle Scholar
  13. 13.
    Mei, L., Zhu, L., Lin, D.: Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983 (2011).  https://doi.org/10.1021/es102624t ADSCrossRefGoogle Scholar
  14. 14.
    Naeem, M., Hasanain, S.K., Kobayashi, M., Ishida, Y., Fujimori, A., Scott, B., Shah, S.I.: Effect of reducing atmosphere on the magnetism of Zn1−xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Nanotechnology 17, 2675 (2006).  https://doi.org/10.1088/0957-4484/17/10/039 ADSCrossRefGoogle Scholar
  15. 15.
    Malevu, T.D., Ocaya, R.O.: Effect of annealing temperature on structural, morphology and optical properties of ZnO nano-needles prepared by zinc-air cell system method. Int. J. Electrochem. Sci. 10, 1752–1761 (2015)Google Scholar
  16. 16.
    Yuan, K., Yu, Q.X., Gao, Q.Q., Wang, J., Zhang, X.T.: A threshold of \( {V}_0^{+}/{V}_0^{++} \) to room temperature ferromagnetism of hydrogenated Mn doped ZnO nanoparticles. Appl. Surf. Sci. 258, 3350–3353 (2012).  https://doi.org/10.1016/j.apsusc.2011.08.080 ADSCrossRefGoogle Scholar
  17. 17.
    Viswanatha, R., Chakraborty, S., Basu, S., Sarma, D.D.: Blue-emitting copper-doped zinc oxide nanocrystals. J. Phys. Chem. B 110, 22310–22312 (2006).  https://doi.org/10.1021/jp065384f CrossRefGoogle Scholar
  18. 18.
    Rajesh, S., Reddy Yadav, L.S., Thyagarajan, K.: Structural optical thermal and photocatalytic properties of ZnO nanoparticles of betel leave by using green synthesis method. J. Nanostruct. 6, 250–255 (2016).  https://doi.org/10.7508/JNS.2016.03.010 CrossRefGoogle Scholar
  19. 19.
    Ye, J.D., Gu, S.L., Qin, F., Zhu, S.M., Liu, S.M., Zhou, X., Liu, W., Hu, L.Q., Zhang, R., Shi, Y., Zheng, Y.D.: Correlation between green luminescence and morphology evolution of ZnO films. Appl. Phys. A Mater. Sci. Process. 81, 759–762 (2005).  https://doi.org/10.1007/s00339-004-2996-0 ADSCrossRefGoogle Scholar
  20. 20.
    Wang, M., Na, E.K., Kim, J.S., Kim, E.J., Hahn, S.H., Park, C., Koo, K.K.: Photoluminescence of ZnO nanoparticles prepared by a low-temperature colloidal chemistry method. Mater. Lett. 61, 4094–4096 (2007).  https://doi.org/10.1016/j.matlet.2007.01.026 CrossRefGoogle Scholar
  21. 21.
    Naeem, M., Hasanain, S.K., Mumtaz, A.: Electrical transport and optical studies of ferromagnetic cobalt doped ZnO nanoparticles exhibiting a metal–insulator transition. J. Phys. Condens. Matter 20, 025210 (2008).  https://doi.org/10.1088/0953-8984/20/02/025210 ADSCrossRefGoogle Scholar
  22. 22.
    Naeem, M., Qaseem, S., Gul, I.H., Maqsood, A.: Study of active surface defects in Ti-doped ZnO nanoparticles. J. Appl. Phys. 107, 124303 (2010).  https://doi.org/10.1063/1.3432571 ADSCrossRefGoogle Scholar
  23. 23.
    Reddy Yadav, L.S., Kumar, D., Kavitha, C., Rajanaika, H., Daruka Prasad, B., Nagabhushana, H., Nagaraju, G.: Antibacterial and photocatalytic activities of ZnO nanoparticles: synthesized using water melon juice as fuel. Int. J. Nanosci. 15, 1650006 (2015).  https://doi.org/10.1142/S0219581X1650006X CrossRefGoogle Scholar
  24. 24.
    Reddy Yadav, L.S., Archana, B., Lingaraju, K., Kavitha, C., Suresh, D., Nagabhushana, H., Nagaraju, G.: Electrochemical sensing, photocatalytic and biological activities of ZnO nanoparticles: synthesis via green chemistry route. Int. J. Nanosci. 15, 1650013 (2016).  https://doi.org/10.1142/S0219581X16500137 CrossRefGoogle Scholar
  25. 25.
    Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242 (2015).  https://doi.org/10.1007/s40820-015-0040-x CrossRefGoogle Scholar
  26. 26.
    Li, M., Zhu, L., Lin, D.: Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983 (2011).  https://doi.org/10.1021/es102624t ADSCrossRefGoogle Scholar
  27. 27.
    Lipovsky, A., Nitzan, Y., Gedanken, A., Lubart, R.: Antifungal activity of ZnO nanoparticles - the role of ROS mediated cell injury. Nanotechnology 22, 105101 (2011).  https://doi.org/10.1088/0957-4484/22/10/105101 ADSCrossRefGoogle Scholar
  28. 28.
    Jiang, W., Mashayekhi, H., Xing, B.: Bacterial toxicity comparison between nano and micro-scaled oxide particles. Environ. Pollut. 157, 1619–1925 (2009).  https://doi.org/10.1016/j.envpol.2008.12.025 CrossRefGoogle Scholar
  29. 29.
    Padmavathy, N., Vijayaraghavan, R.: Enhanced bioactivity of ZnO nanoparticles - an antimicrobial study. Sci. Technol. Adv. Mater. 9, 035004 (2008).  https://doi.org/10.1088/1468-6996/9/3/035004 CrossRefGoogle Scholar
  30. 30.
    Dwivedi, S., Wahab, R., Khan, F., Mishra, Y.K., Musarrat, J., Al-Khedhairy, A.A.: Reactive oxygen species-mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9, 111289 (2014).  https://doi.org/10.1371/journal.pone.0111289 ADSCrossRefGoogle Scholar
  31. 31.
    Zhang, H., Shan, Y., Dong, L.: A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer. J. Biomed. Nanotechnol. 10, 1450–1457 (2014)CrossRefGoogle Scholar
  32. 32.
    Zhang, H., Chen, B., Jiang, H., Wang, C., Wang, H., Wang, X.: A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32, 1906–1194 (2011).  https://doi.org/10.1016/j.biomaterials.2010.11.027 CrossRefGoogle Scholar
  33. 33.
    Wu, J.M., Kao, W.T.: Heterojunction nanowires of AgxZn1-xO–ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J. Phys. Chem. C 119, 1433 (2015).  https://doi.org/10.1021/jp510259j CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Qurat-ul-Ain Naqvi
    • 1
  • Amber Kanwal
    • 1
  • S. Qaseem
    • 1
  • M. Naeem
    • 1
    Email author
  • S. Rizwan Ali
    • 1
  • M. Shaffique
    • 2
  • M. Maqbool
    • 3
  1. 1.Department of PhysicsFederal Urdu University of Arts, Science and TechnologyKarachiPakistan
  2. 2.Department of MicrobiologyFederal Urdu University of Arts, Science and TechnologyKarachiPakistan
  3. 3.Department of Clinical & Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations