Heat damage of cytoskeleton in erythrocytes increases membrane roughness and cell rigidity

  • E. Yu ParshinaEmail author
  • A. I. Yusipovich
  • A. R. Brazhe
  • M. A. Silicheva
  • G. V. Maksimov
Original Paper


The intensity of erythrocyte membrane fluctuations was studied by laser interference microscopy (LIM), which provide information about mechanical properties of the erythrocyte membrane. Atomic force microscopy (AFM) was used to study erythrocyte surface relief; it is related to the cytoskeleton structure of erythrocyte membrane. Intact human erythrocytes and erythrocytes with a destroyed cytoskeleton were used. According to the obtained results, cytoskeleton damage induced by heating up to 50 °С results in a reduced intensity of cell membrane fluctuations compared to non-treated cells (20.6 ± 10.2 vs. 30.5 ± 5.5 nm, correspondingly), while the roughness of the membrane increases (4.5 ± 1.5 vs. 3.4 ± 0.5 nm, correspondingly).


Erythrocytes  Cytoskeleton  Roughness  Membrane fluctuations  Elastic properties 



This work was supported by Russian Foundation for Basic Research (grant #17-00-00407)


  1. 1.
    Puckeridge, M., Chapman, B.E., Conigrave, A.D., Kuchel, P.W.: Membrane flickering of the human erythrocyte: physical and chemical effectors. Eur. Biophys. J. 43(4), 169–177 (2014). CrossRefGoogle Scholar
  2. 2.
    Brochard-Wyart, F., Lennon, J.F.: Frequency spectrum of flicker phenomenon in erythrocytes. J. Phys. (France) 36(11), 1035–1047 (1975). CrossRefGoogle Scholar
  3. 3.
    Kononenko, V.L.: Flicker in erythrocytes. I. Theoretical models and registration techniques. Biochem. (Moscow) Suppl. A: Membr. Cell Biol. 3(4), 356–371 (2009). MathSciNetCrossRefGoogle Scholar
  4. 4.
    Strey, H., Peterson, M., Sackmann, E.: Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophys. J. 69(2), 478–488 (1995). ADSCrossRefGoogle Scholar
  5. 5.
    Boss, D., Hoffmann, A., Rappaz, B., Depeursinge, C., Magistretti, P.J., Van de Ville, D., Marquet, P.: Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering. PLoS ONE 7(8), e40667 (2012). ADSCrossRefGoogle Scholar
  6. 6.
    Tuvia, S., Levin, S., Bitler, A., Korenstein, R.: Mechanical fluctuations of the membrane–skeleton are dependent on F-Actin ATPase in human erythrocytes. J. Cell Biol. 141(7), 1551–1561 (1998)CrossRefGoogle Scholar
  7. 7.
    Turlier, H., Fedosov, D.A., Audoly, B., Auth, T., Gov, N.S., Sykes, C., Joanny, J.F., Gompper, G., Betz, T.: Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nat. Phys. 12, 513 (2016). CrossRefGoogle Scholar
  8. 8.
    Gov, N.S., Safran, S.A.: Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys. J. 88(3), 1859–1874 (2005). CrossRefGoogle Scholar
  9. 9.
    Park, Y., Best, C.A., Auth, T., Gov, N.S., Safran, S.A., Popescu, G., Suresh, S., Feld, M.S.: Metabolic remodeling of the human red blood cell membrane. Proc. Nat. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010). ADSCrossRefGoogle Scholar
  10. 10.
    Kononenko, V.L.: Dielectro-deformations and flicker of erythrocytes: fundamental aspects of medical diagnostics applications. In: Saratov Fall Meeting 2001 2002, p. 10. SPIEGoogle Scholar
  11. 11.
    Monzel, C., Sengupta, K.: Measuring shape fluctuations in biological membranes. J. Phys. D. Appl. Phys. 49(24), 243002 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Popescu, G., Park, Y., Choi, W., Dasari, R.R., Feld, M.S., Badizadegan, K.: Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells Mol. Dis. 41(1), 10–16 (2008). CrossRefGoogle Scholar
  13. 13.
    Rappaz, B., Barbul, A., Hoffmann, A., Boss, D., Korenstein, R., Depeursinge, C., Magistretti, P.J., Marquet, P.: Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy. Blood Cells Mol. Dis. 42(3), 228–232 (2009)CrossRefGoogle Scholar
  14. 14.
    Yusipovich, A.I., Parshina, E.Y., Brysgalova, N.Y., Brazhe, A.R., Brazhe, N.A., Lomakin, A.G., Levin, G.G., Maksimov, G.: V: Laser interference microscopy in erythrocyte study. J. Appl. Phys. 105(10), 102037 (2009). ADSCrossRefGoogle Scholar
  15. 15.
    Tychinsky, V.P., Tikhonov, A.N.: Interference microscopy in cell biophysics. 1. Principles and methodological aspects of coherent phase microscopy. Cell Biochem.Biophys. 58(3), 107–116 (2010)CrossRefGoogle Scholar
  16. 16.
    Parshina, E.Y., Yusipovich, A.I., Platonova, A.A., Grygorczyk, R., Maksimov, G.V., Orlov, S.N.: Thermal inactivation of volume-sensitive K+, ClGИТ cotransport and plasma membrane relief changes in human erythrocytes. Pflugers Arch. - Eur. J. Physiol. 465(7), 977–983 (2013)CrossRefGoogle Scholar
  17. 17.
    Girasole, M., Pompeo, G., Cricenti, A., Congiu-Castellano, A., Andreola, F., Serafino, A., Frazer, B.H., Boumis, G., Amiconi, G.: Roughness of the plasma membrane as an independent morphological parameter to study RBCs: a quantitative atomic force microscopy investigation. Biochim. Biophys. Acta Biomembr. 1768(5), 1268–1276 (2007). CrossRefGoogle Scholar
  18. 18.
    Girasole, M., Pompeo, G., Cricenti, A., Longo, G., Boumis, G., Bellelli, A., Amiconi, S.: The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness. Nanomedicine 6(6), 760–768 (2010). CrossRefGoogle Scholar
  19. 19.
    Ohta, Y., Otsuka, C., Okamoto, H.: Changes in surface roughness of erythrocytes due to shear stress: atomic force microscopic visualization of the surface microstructure. J. Artif. Organs 6(2), 101–105 (2003)Google Scholar
  20. 20.
    Yamaikina, M.V., Mansurov, V.A., Ivashkevich, É.V.: Thermal destruction of erythrocyte spectrin: rheology, deformability, and stability with respect to detergents. J. Eng. Phys. Thermophys. 69(3), 283–286 (1996). CrossRefGoogle Scholar
  21. 21.
    Dinarelli, S., Longo, G., Krumova, S., Todinova, S., Danailova, A., Taneva, S.G., Lenzi, E., Mussi, V., Girasole, M.: Insights into the morphological pattern of erythrocytes’ aging: coupling quantitative AFM data to microcalorimetry and Raman spectroscopy. J. Mol. Recognit. 31(11), e2732 (2018). CrossRefGoogle Scholar
  22. 22.
    Sharma, S., Zingde, S.M., Gokhale, S.M.: Identification of human erythrocyte cytosolic proteins associated with plasma membrane during thermal stress. J. Membr. Biol. 246(8), 591–607 (2013). CrossRefGoogle Scholar
  23. 23.
    Orlov, S.N., Kolosova, I.A., Cragoe, E.J., Gurlo, T.G., Mongin, A.A., Aksentsev, S.L., Konev, S.V.: Kinetics and peculiarities of thermal inactivation of volume-induced Na+/H+ exchange, Na+,K+,2Cl- cotransport and K+,Cl- cotransport in rat erythrocytes. Biochim. Biophys. Acta 1151(2), 186–192 (1993)CrossRefGoogle Scholar
  24. 24.
    Shnyrov, V.L., Orlov, S.N., Zhadan, G.G., Pokudin, N.I.: Thermal inactivation of membrane proteins, volume-dependent Na+, K(+)-cotransport, and protein kinase C activator-induced changes of the shape of human and rat erythrocytes. Biomed. Biochim. Acta 49(6), 445–453 (1990)Google Scholar
  25. 25.
    Marquet, P., Rappaz, B., Pavillon, N.: Quantitative phase-digital holographic microscopy: a new modality for live cell imaging. In: New Techniques in Digital Holography. pp. 169-217. John Wiley & Sons, Inc., (2015)Google Scholar
  26. 26.
    Yusipovich, A.I., Cherkashin, A.A., Verdiyan, E.E., Sogomonyan, I.A., Maksimov, G.V.: Laser interference microscopy: a novel approach to the visualization of structural changes in myelin during the propagation of nerve impulses. Laser Phys. Lett. 13(8), 085601 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Yusipovich, A.I., Novikov, S.M., Kazakova, T.A., Erokhova, L.A., Brazhe, N.A., Lazarev, G.L., Maksimov, G.V.: Peculiarities of studying an isolated neuron by the method of laser interference microscopy. Quantum Electron. 36(9), 874–878 (2006). ADSCrossRefGoogle Scholar
  28. 28.
    Zhurina, M.V., Kostrikina, N.A., Parshina, E.Y., Strelkova, E.A., Yusipovich, A.I., Maksimov, G.V., Plakunov, V.K.: Visualization of the extracellular polymeric matrix of Chromobacterium violaceum biofilms by microscopic methods. Microbiology 82(4), 517–524 (2013). CrossRefGoogle Scholar
  29. 29.
    Minaev, V.L., Yusipovich, A.I.: Use of an automated interference microscope in biological research. Meas. Tech. 55(7), 839–844 (2012)CrossRefGoogle Scholar
  30. 30.
    Shock, I., Girshovitz, P., Nevo, U., Shaked, N.T., Barbul, A., Korenstein, R.: Optical phase nanoscopy in red blood cells using low-coherence spectroscopy. In: 2012, p. 6. SPIEGoogle Scholar
  31. 31.
    Goldberg, K.A., Bokor, J.: Fourier-transform method of phase-shift determination. Appl. Opt. 40(17), 2886–2894 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)CrossRefGoogle Scholar
  33. 33.
    Moll, W., Voss, H.: The diffusion coefficient of haemoglobin. Respir. Physiol. 1(4), 357–365 (1966). CrossRefGoogle Scholar
  34. 34.
    Barer, R., Joseph, S.: Refractometry of living cells. Part I. Basic principles. Q. J. Microsc. Sci. 95(4), 399–423 (1954)Google Scholar
  35. 35.
    Jackson, W.M., Kostyla, J., Nordin, J.H., Brandts, J.F.: Calorimetric study of protein transitions in human erythrocyte ghosts. Biochemistry 12(19), 3662–3667 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Biological DepartmentM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations