Advertisement

Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus–Lindqvist effects using a shear-induced red blood cell migration model

  • Rachid Chebbi
Original Paper

Abstract

Blood flow in micro capillaries of diameter approximately 15–500 μm is accompanied with a lower tube hematocrit level and lower apparent viscosity as the diameter decreases. These effects are termed the Fåhraeus and Fåhraeus–Lindqvist effects, respectively. Both effects are linked to axial accumulation of red blood cells. In the present investigation, we extend previous works using a shear-induced model for the migration of red blood cells and adopt a model for blood viscosity that accounts for the suspending medium viscosity and local hematocrit level. For fully developed hematocrit profiles (i.e., independent of axial location), the diffusion fluxes due to particle collision frequency and viscosity gradients are of equal magnitude and opposite directions. The ratio of the diffusion coefficients for the two fluxes affects both the Fåhraeus and Fåhraeus–Lindqvist effects and is found related to the capillary diameter and discharge hematocrit using a well-known data-fit correlation for apparent blood viscosity. The velocity and hematocrit profiles were determined numerically as functions of radial coordinate, tube diameter, and discharge hematocrit. The velocity profile determined numerically is consistent with the derived analytical expression and the results are in good agreement with published numerical results and experimental data for hematocrit ratio and hematocrit and velocity profiles.

Keywords

Red blood cells Axial accumulation Apparent blood viscosity Microvessels Cell depletion 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflicts of interest.

References

  1. 1.
    Fournier, R.L.: Basic Transport Phenomena in Biomedical Engineering. CRC Press, Boca Raton (2012)Google Scholar
  2. 2.
    Fåhraeus, R.: The suspension stability of blood. Physiol. Rev. 9, 241–274 (1929)CrossRefGoogle Scholar
  3. 3.
    Martini, P., Pierach, A., Scheryer, E.: Die Strömung des Blutes in engen Gefäβen. Eine Abweichung vom Poiseuille’schen Gesetz. Deutsches Archiv für klinische Medizin 169, 212–222 (1930)Google Scholar
  4. 4.
    Fåhraeus, R., Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Am. J. Phys. 96, 562–568 (1931)Google Scholar
  5. 5.
    Secomb, T.W., Pries, A.R.: Blood viscosity in microvessels: experiment and theory. Comptes Rendus Physique 14, 470–478 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Pries, A.R., Neuhaus, D., Gaehtgens, P.: Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Phys. Heart Circ. Phys. 263, H1770–H1778 (1992)Google Scholar
  7. 7.
    Toksvang, L.N., Berg, R.M.G.: Using a classic paper by Robin Fåhraeus and Torsten Lindqvist to teach basic hemorheology. Adv. Physiol. Educ. 37, 129–133 (2013)CrossRefGoogle Scholar
  8. 8.
    Hund, S.J., Kameneva M. V, Antaki, J.F.: A quasi-mechanistic mathematical representation for blood viscosity. Fluids, 2(1), 10–36 (2017)CrossRefGoogle Scholar
  9. 9.
    Haynes, R.F.: Physical basis of the dependence of blood viscosity on tube radius. Am. J. Physiol. 198, 1193–1200 (1960)Google Scholar
  10. 10.
    Sharan, M., Popel, A.S.: A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38, 415–428 (2001)Google Scholar
  11. 11.
    Chebbi, R.: Dynamics of blood flow: modeling of the Fåhræus–Lindqvist effect. J. Biol. Phys. 41(3), 313–326 (2015)CrossRefGoogle Scholar
  12. 12.
    Sriram, K., Intaglietta, M., Tartakovsky, D.M.: Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements. Microcirculation 21(7), 628–639 (2014)CrossRefGoogle Scholar
  13. 13.
    Leighton, D.T., Acrivos, A.: The shear-induced migration of particles in concentrated suspension. J. Fluid Mech. 181, 415–439 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Phillips, R.J., Armstrong, R.C., Brown, R.A.: A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids 4, 30–40 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    Krieger, I.M., Dougherty, T.J.: A mechanism to non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137–152 (1959)CrossRefGoogle Scholar
  16. 16.
    Weert, K.V.: Numerical and Experimental Analysis of Shear-Induced Migration in Suspension Flow. A thesis for the degree of Master, Eindhoven University (2005).Google Scholar
  17. 17.
    Mansour, M.H., Bressloff, N.W., Shearman, C.P.: Red blood cell migration in microvessels. Biorheology 47, 73–93 (2010)Google Scholar
  18. 18.
    Quemada, D.: Rheology of concentrated disperse systems: a model for non-Newtonian shear viscosity in steady flows. Rheol. Acta 17, 632–642 (1978)CrossRefGoogle Scholar
  19. 19.
    Thurston, G.B.: Viscoelasticity of human blood. Biophys. J. 12(9), 1205–1217 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    Moyers-Gonzalez, M.A., Owens, R.G.: Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube. Biorheology 47(1), 39–71 (2010)Google Scholar
  21. 21.
    Moyers-Gonzalez, M., Owens, R.G., Fang, J.: A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow. J. Fluid Mech. 617, 327–354 (2008)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Dimakopoulos, Y., Kelesidis, G., Tsouka, S., Georgiou, G.C., Tsamopoulos, J.: Hemodynamics in stenotic vessels of small diameter under steady state conditions: effect of viscoelasticity and migration of red blood cells. Biorheology 52(3), 183–210 (2015)CrossRefGoogle Scholar
  23. 23.
    Mavrantzas, V.G., Beris, A.N.: Modelling the rheology and the flow-induced concentration changes in polymer solutions. Phys. Rev. Lett. 69, 273–276 (1992) Errata 70, 2659 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    Tsouka, S., Dimakopoulos, Y., Mavrantzas, V., Tsamopoulos, J.: Stress-gradient induced migration of polymers in corrugated channels. J. Rheol. 58(4), 911–947 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Roselli, R.J., Diller, R.: Biotransport: Principles and Applications. Springer, New York (2011)CrossRefGoogle Scholar
  26. 26.
    Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. John Wiley, New York (2007)Google Scholar
  27. 27.
    Long, D.S., Smith, M.L., Pries, A.R., Ley, K., Damiano, E.R.: Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc. Natl. Acad. Sci. U. S. A. 101, 10060–10065 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Fedosov, D.A., Caswell, B., Popel, A.S., Karniadakis, G.E.: Blood flow and cell-free layer in microvessels. Microcirculation 17(8), 615–628 (2010)CrossRefGoogle Scholar
  29. 29.
    Hochmuth, R.M., Davis, D.O.: Changes in hematocrit for blood flow in narrow tubes. Bibl. Anat. 10, 59–65 (1969)Google Scholar
  30. 30.
    Jendrucko, R.J., Lee, J.S.: The measurement of hematocrit of blood flowing in glass capillaries by microphotometry. Microvasc. Res. 6(3), 316–331 (1973)CrossRefGoogle Scholar
  31. 31.
    Pries, A.R., Kanzow, G., Gaehtgens, P.: Microphotometric determination of hematocrit in small vessels. Am. J. Physiol. Heart Circ. Physiol. 245(1), H167–H177 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAmerican University of SharjahSharjahUnited Arab Emirates

Personalised recommendations