Advertisement

Journal of Biological Physics

, Volume 44, Issue 3, pp 471–482 | Cite as

Mn2+ concentrations in coastal fish otoliths: understanding environmental and biological influences from EPR

  • Ana Paula Madeira Di Beneditto
  • Roberto Weider de Assis Franco
Original Paper

Abstract

The Mn2+ concentrations in the sagittae otoliths of 12 fish families (and 19 species) that co-occur in a coastal area of southeastern Brazil (~21°S) were quantified using electron paramagnetic resonance (EPR). Inferences were made about the relationship between fish habitat and trace element incorporation. Inferences were made on the relationship between trace element concentration and otolith shape. The differences in Mn2+ concentrations among the species suggest that habitat (and feeding habits) might drive the incorporation of this trace element into fish otoliths, with higher values in bottom-associated fish species than in surface-associated species. In surface-associated fish species, the correlation between trace element concentrations and otolith shape was stronger than in bottom-associated species. Thus, while the Mn bioavailability in a fish’s habitat, especially from feeding resources, is a local driving influence of trace element incorporation in sagittae otoliths, species-specific requirements also have an influence. Quantitative EPR is a non-destructive technique that is very useful when the available samples cannot be damaged, like with otolith collections.

Keywords

Coastal teleost Electron paramagnetic resonance Manganese Sagittae otoliths 

Notes

Acknowledgements

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (grant n° 301.405/2013-1) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ (grant n° E-26/201.161/2014). The EPR spectrometer was supported by FAPERJ (grant n°. E-26/112.219/2008).

Compliance with ethical standards

Conflict of interest

Ana Paula Madeira Di Beneditto declares that she has no conflict of interest. Roberto Weider de Assis Franco declares that he has no conflict of interest.

Supplementary material

10867_2018_9502_MOESM1_ESM.doc (135 kb)
ESM 1 (DOC 135 kb)

References

  1. 1.
    Malm, O., Pfeiffer, W.C., Fiszman, M., Azcue, J.M.: Transport and availability of heavy metals in the Paraiba do Sul-Guandu River system, Rio de Janeiro state, Brazil. Sci. Total Environ. 75, 201–209 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Neal, C., Robson, A.J., Wass, P., Wade, A.J., Ryland, G.P., Leach, D.V., Leeks, G.J.L.: Major, minor, trace element and suspended sediment variations in the river Derwent. Sci. Total Environ. 211, 163–172 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Calvert, S.E., Pedersen, T.F.: Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar. Geol. 113, 67–88 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Eriksson, S.P.: Variations of manganese in the eggs of the Norway lobster, Nephrops norvegicus (L.). Aquat. Toxicol. 48, 291–295 (2000)CrossRefGoogle Scholar
  5. 5.
    Popper, A.N., Lu, Z.: Structure–function relationships in fish otolith organs. Fish. Res. 46, 15–25 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Béarez, P., Carlier, G., Lorand, J.-P., Parodi, G.-C.: Destructive and non-destructive microanalysis of biocarbonates applied to anomalous otoliths of archaeological and modern sciaenids (Teleostei) from Peru and Chile. C. R. Biol. 328, 243–252 (2005)Google Scholar
  7. 7.
    Franco, R.W.A., Sampaio, J.A., Medina, A., Di Beneditto, A.P.M.: A new approach to marine fish otoliths study: electron paramagnetic resonance. J. Mar. Biol. Assoc. UK 93, 1973–1980 (2013)CrossRefGoogle Scholar
  8. 8.
    Angus, J.G., Raynor, J.B., Robson, M.: Reliability of experimental partition coefficients in carbonate systems: evidence for inhomogeneous distribution of impurity cations. Chem. Geol. 27, 181–205 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    De Vries, M.C., Gillanders, B.M., Elsdon, T.S.: Facilitation of barium uptake into fish otoliths: influence of strontium concentration and salinity. Geochim. Cosmochim. Acta 69, 4061–4072 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Doubleday, Z.A., Harris, H.H., Izzo, C., Gillanders, B.M.: Strontium randomly substituting for calcium in fish otolith aragonite. Anal. Chem. 86, 865–869 (2013)CrossRefGoogle Scholar
  11. 11.
    Hamer, P.A., Jenkins, G.P.: Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. J. Fish Biol. 71, 1035–1055 (2007)CrossRefGoogle Scholar
  12. 12.
    Avigliano, E., Volpedo, A.V.: A review of the application of otolith microchemistry toward the study of Latin American fishes. Rev. Fish. Sci. Aquac ult. 24, 369–384 (2016)Google Scholar
  13. 13.
    Tanner, S.E., Reis-Santos, P., Cabral, H.N.: Otolith chemistry in stock delineation: a brief overview, current challenges and future prospects. Fish. Res. 173, 206–213 (2016)CrossRefGoogle Scholar
  14. 14.
    Brophy, D., Jeffries, T.E., Danilowicz, B.S.: Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Mar. Biol. 144, 779–786 (2004)CrossRefGoogle Scholar
  15. 15.
    Avigliano, E., Carvalho, B., Velasco, G., Tripodi, P., Vianna, M., Volpedo, A.V.: Nursery areas and connectivity of the adults anadromous catfish (Genidens barbus) revealed by otolith-core microchemistry in the south-western Atlantic Ocean. Mar. Freshw. Res. 68, 931–940 (2017)CrossRefGoogle Scholar
  16. 16.
    Fowler, A.J., Hamer, P.A., Kemp, J.: Age-related otolith chemistry profiles help resolve demographics and meta-population structure of a widely dispersed, coastal fishery species. Fish. Res. 189, 77–94 (2017)CrossRefGoogle Scholar
  17. 17.
    Abragam, A., Bleaney, B.: Electron Paramagnetic Resonance of Transition Ions. Dover, New York (1970)Google Scholar
  18. 18.
    Montegrossi, G., Di Benedetto, F., Minissale, A., Paladini, M., Pardi, L.A., Romanelli, M., Romei, F.: Determination and significance of the Mn(II) zero-field splitting (ZFS) interaction in the geochemistry of travertines. Appl. Geochem. 21, 820–825 (2006)CrossRefGoogle Scholar
  19. 19.
    Eaton, G.R., Eaton, S.S., Barr, D.P., Weber, R.T.: Quantitative EPR. Springer, New York (2010)CrossRefGoogle Scholar
  20. 20.
    Marcu, D., Damian, G., Cosma, C., Cristea, V.: Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). J. Biol. Phys. 39, 625–634 (2013)CrossRefGoogle Scholar
  21. 21.
    Souza, T.A., Godoy, J.M., Godoy, M.L.D.P., Moreira, I., Carvalho, Z.L., Salomão, M.S.M.B., Rezende, C.E.: Use of multitracers for the study of water mixing in the Paraíba do Sul River estuary. J. Environ. Radioact. 101, 564–570 (2010)CrossRefGoogle Scholar
  22. 22.
    Hurlbert, S.H., Lombardi, C.M.: Final collapse of the Neyman–Pearson decision theoretic framework and rise of the neoFisherian. Ann. Zool. Fenn. 36, 311–349 (2009)CrossRefGoogle Scholar
  23. 23.
    Rouleau, C., Tjälve, H., Gottofrey, J.: Effects of low pH on the uptake and distribution of 54Mn(II) in brown trout (Salmo trutta). Environ. Toxicol. Chem. 15, 708–710 (1996)Google Scholar
  24. 24.
    Struck, B.D., Pelzer, R., Ostapczuk, P., Emons, H., Mohl, C.: Statistical evaluation of ecosystem properties influencing the uptake of As, Cd, Co, Cu, Hg, Mn, Ni, Pb and Zn in seaweed (Fucus vesiculosus) and common mussel (Mytilus edulis). Sci. Total Environ. 207, 29–42 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Arai, T., Hirata, T.: Differences in the trace element deposition in otoliths between marine- and freshwater-resident Japanese eels, Anguilla japonica, as determined by laser ablation ICPMS. Environ. Biol. Fish 75, 173–182 (2006)CrossRefGoogle Scholar
  26. 26.
    Hägerstrand, H., Himberg, M., Jokikokko, E., von Numers, M., Mrówczynska, L., Vasemägi, A., Wiklund, T., Lill, J.: Otolith elemental characteristics of whitefish (Coregonus lavaretus) from brackish waters of the Gulf of Bothnia, Baltic Sea. Ecol. Freshw. Fish 26, 66–74 (2017)CrossRefGoogle Scholar
  27. 27.
    Elsdon, T.S., Gillanders, B.M.: Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci. 59, 1796–1808 (2002)CrossRefGoogle Scholar
  28. 28.
    Dorval, E., Jones, C.M., Hannigan, R., Montfrans, J.: Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat. Sci. 64, 411–424 (2007)CrossRefGoogle Scholar
  29. 29.
    Elsdon, T.S., Gillanders, B.M.: Relationship between water chemistry and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar. Ecol. Prog. Ser. 260, 263–272 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Hori, R., Iwasaki, S.I.: On the manganese content of the egg of Oryzias latipes and its changes during the early development. Protoplasma 87, 403–407 (1976)CrossRefGoogle Scholar
  31. 31.
    Young, P.C., Leis, J.M., Hausfeld, H.F.: Seasonal and spatial distribution of fish larvae in waters over the north west continental shelf of Western Australia. Mar. Ecol. Prog. Ser. 31, 209–222 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    Martins, A.D., Haimovici, M.: Reproduction of the cutlassfish Trichiurus lepturus in the southern Brazil subtropical convergence ecosystem. Sci. Mar. 64, 97–105 (2000)CrossRefGoogle Scholar
  33. 33.
    Froese, R., Pauly, D.: FishBase. http://www.fishbase.org (2017). Accessed 2 May 2017
  34. 34.
    Sanchez-Jerez, P., Gillanders, B.M., Kingsford, M.J.: Spatial variability of trace elements in fish otoliths: comparison with dietary items and habitat constituents in seagrass meadows. J. Fish Biol. 61, 801–821 (2002)CrossRefGoogle Scholar
  35. 35.
    Di Beneditto, A.P.M., Bittar, V.T., Camargo, P.B., Rezende, C.E., Kehrig, H.A.: Mercury and nitrogen isotope in a marine species from a tropical coastal food web. Arch. Environ. Contam. Toxicol. 62, 264–271 (2012)CrossRefGoogle Scholar
  36. 36.
    Bittar, V.T., Castello, B.F.L., Di Beneditto, A.P.M.: Hábito alimentar do Peixe-espada adulto, Trichiurus lepturus, na costa norte do Rio de Janeiro, sudeste do Brasil. Biotemas 21, 83–90 (2008)CrossRefGoogle Scholar
  37. 37.
    Bittar, V.T., Rezende, C.E., Kehrig, H.A., Di Beneditto, A.P.M.: Mercury bioaccumulation and isotopic relation between Trichiurus lepturus (Teleostei) and its preferred prey in coastal waters of southeastern Brazil. An. Acad. Bras. Cienc. 88, 801–807 (2016)CrossRefGoogle Scholar
  38. 38.
    Dallinger, R., Kautzky, H.: The importance of contaminated food for uptake of heavy metals by rainbow trout (Salmo gairdneri): a field study. Oecologia 67, 82–89 (1985)ADSCrossRefGoogle Scholar
  39. 39.
    Niemiec, M., Wiśniowska-Kielian, B.: Manganese accumulation in selected links of food chain of aquatic ecosystems. J. Elem. 20, 945–956 (2015)Google Scholar
  40. 40.
    Cheung, K.C., Leung, H.M., Wong, M.H.: Metal concentrations of common freshwater and marine fish from the Pearl River delta, South China. Arch. Environ. Contam. Toxicol. 54, 705–715 (2008)CrossRefGoogle Scholar
  41. 41.
    Doyle, M.J., Watson, W., Bowlin, N.M., Sheavly, S.B.: Plastic particles in coastal pelagic ecosystems of the Northeast Pacific Ocean. Mar. Environ. Res. 71, 41–52 (2011)CrossRefGoogle Scholar
  42. 42.
    Ladich, F.: Sound production and acoustic communication. In: Von der Ende, G., Mogdans, J., Kapoor, B.G. (eds.) The Senses of Fishes, pp. 210–230. Narosa Publishing House, New Delhi (2004)CrossRefGoogle Scholar
  43. 43.
    Ramcharitar, J., Gannon, D.P., Popper, A.N.: Bioacoustics of fishes of the family Sciaenidae (croakers and drums). Trans. Am. Fish. Soc. 135, 1409–1431 (2006)Google Scholar
  44. 44.
    Fowler, A.J., Campana, S.E., Jones, C.M., Thorroid, S.R.: Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Can. J. Fish. Aquat. Sci. 52, 1431–1441 (1995)CrossRefGoogle Scholar
  45. 45.
    Brown, J.A.: Classification of juvenile flatfishes to estuarine and coastal habitats based on the elemental composition of otoliths. Estuar. Coast. Shelf Sci. 66, 594–611 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Chittaro, P.M., Klinger, T., Telmer, K., Sanborn, M., Morgan, L.: Using otolith chemistry to investigate population structure of quillback rockfish in Puget Sound. Northwest Sci. 84, 243–254 (2010)CrossRefGoogle Scholar
  47. 47.
    Warburton, M.L., Reid, M.R., Stirling, C.H., Closs, G.: Validation of depth-profiling LA-ICP-MS in otoliths applications. Can. J. Fish. Aquat. Sci. 74, 572–581 (2017)CrossRefGoogle Scholar
  48. 48.
    Kenduzler, E., Ates, M., Arslan, Z., McHenry, M., Tchounwou, P.B.: Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Talanta 93, 404–410 (2012)CrossRefGoogle Scholar
  49. 49.
    Avigliano, E., Saez, M.B., Rico, R., Volpedo, A.V.: Use of otoliths strontium:calcium and zinc:calcium ratios as na indicator of the habitat of Percophis brasiliensis Quoy & Gaimard, 1825 in the southwestern Atlantic Ocean. Neotrop. Ichthyol. 13, 187–194 (2015)CrossRefGoogle Scholar
  50. 50.
    Avigliano, E., Domanico, A., Sánchez, S., Volpedo, A.V.: Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fish. Res. 186, 1–10 (2017)CrossRefGoogle Scholar
  51. 51.
    Stirbet, A.D., Duliu, O.G.: Electron paramagnetic resonance investigation of the interaction of nitroxyl spin labels with photosynthetic membranes. J. Biol. Phys. 22, 175–185 (1996)CrossRefGoogle Scholar
  52. 52.
    Abraçado, L.G., Esquivel, D.M.S., Wajnberg, E.: ZFC/FC of oriented magnetic material in the Solenopsis interrupta head with antennae: characterization by FMR and SQUID. J. Biol. Phys. 38, 607–621 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratório de Ciências Ambientais, CBBUniversidade Estadual do Norte Fluminense Darcy RibeiroCampos dos GoytacazesBrazil
  2. 2.Laboratório de Ciências Físicas, CCTUniversidade Estadual do Norte Fluminense Darcy RibeiroCampos dos GoytacazesBrazil

Personalised recommendations