Advertisement

Journal of Biological Physics

, Volume 44, Issue 3, pp 401–417 | Cite as

Terahertz-infrared spectroscopy of Shewanella oneidensis MR-1 extracellular matrix

  • Z. V. Gagkaeva
  • E. S. Zhukova
  • V. Grinenko
  • A. K. Grebenko
  • K. V. Sidoruk
  • T. A. Voeikova
  • M. Dressel
  • B. P. Gorshunov
Original Paper

Abstract

Employing optical spectroscopy we have performed a comparative study of the dielectric response of extracellular matrix and filaments of electrogenic bacteria Shewanella oneidensis MR-1, cytochrome c, and bovine serum albumin. Combining infrared transmission measurements on thin layers with data of the terahertz spectra, we obtain the dielectric permittivity and AC conductivity spectra of the materials in a broad frequency band from a few cm−1 up to 7000 cm−1 in the temperature range from 5 to 300 K. Strong absorption bands are observed in the three materials that cover the range from 10 to 300 cm−1 and mainly determine the terahertz absorption. When cooled down to liquid helium temperatures, the bands in Shewanella oneidensis MR-1 and cytochrome c reveal a distinct fine structure. In all three materials, we identify the presence of liquid bound water in the form of librational and translational absorption bands at ≈ 200 and ≈ 600 cm−1, respectively. The sharp excitations seen above 1000 cm−1 are assigned to intramolecular vibrations.

Keywords

Shewanella oneidensis Conductivity mechanism Terahertz spectroscopy Infrared spectroscopy 

Notes

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation (Projects N3.9896.2017/BY, 5-100) and by MIPT visiting professors grant. The authors acknowledge K.A. Motovilov for fruitful discussions. We acknowledge discussions with V.I. Borshchevskiy, V.I. Gordelii, Yu. Feldman, V.V. Lebedev, S. Tretiak, G.A. Tsirlina, A. Zhugayevych.

Author contributions

T.A.V. and B.P.G. designed the research; K.V.S. and T.A.V. performed cultivation of Shewanella oneidensis MR-1, A.K.G. prepared EMF, Z.V.G., E.S.Z, V.G., K.V.S. and A.K.G. performed research; Z.V.G., E.S.Z. and V.G. analyzed data; B.P.G and M.D. wrote the paper.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing financial interests.

References

  1. 1.
    Veazey, J.P., Reguera, G., Tessmer, S.H.: Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy. Phys. Rev. E 84, 1–4 (2011).  https://doi.org/10.1103/PhysRevE.84.060901
  2. 2.
    Leung, K.M., Wanger, G., El-Naggar, M.Y., Gorby, Y., Southam, G., Lau, W.M., Yang, J.: Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Lett. 13, 2407–2411 (2013).  https://doi.org/10.1021/nl400237p ADSCrossRefGoogle Scholar
  3. 3.
    El-Naggar, M.Y., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.M., Nealson, K.H., Gorby, Y.A.: Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. U. S. A. 107, 18127–18131 (2010).  https://doi.org/10.1073/pnas.1004880107 ADSCrossRefGoogle Scholar
  4. 4.
    Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S.F., Johnson, J.P., Rotello, V.M., Tuominen, M.T., Lovley, D.R.: Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573–579 (2011).  https://doi.org/10.1038/nnano.2011.119 ADSCrossRefGoogle Scholar
  5. 5.
    Malvankar, N.S., Yalcin, S.E., Tuominen, M.T., Lovley, D.R.: Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat. Nanotechnol. 9, 1012–1017 (2014).  https://doi.org/10.1038/nnano.2014.236 ADSCrossRefGoogle Scholar
  6. 6.
    Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., Gorby, Y.A., Golbeck, J.H., El-Naggar, M.Y.: Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. U. S. A. 111, 12883–12888 (2014).  https://doi.org/10.1073/pnas.1410551111 ADSCrossRefGoogle Scholar
  7. 7.
    Subramanian, P., Pirbadian, S., El-Naggar, M.Y., Jensen, G.J.: The ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryo-tomography. bioRxiv. (2017)Google Scholar
  8. 8.
    Malvankar, N.S., Vargas, M., Nevin, K., Tremblay, P., Evans-Lutterodt, K., Nykypanchuk, D.: Structural basis for metallic-like conductivity in microbial nanowires. mBio 6(2), e00084 (2015).  https://doi.org/10.1128/mBio.00084-15
  9. 9.
    Xiao, K., Malvankar, N.S., Shu, C., Martz, E., Lovley, D.R., Sun, X.: Low-energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurreducens pili. Sci. Rep. 6, 23385 (2016).  https://doi.org/10.1038/srep23385 ADSCrossRefGoogle Scholar
  10. 10.
    Malvankar, N.S., Lovley, D.R.: Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5, 1039–1046 (2012).  https://doi.org/10.1002/cssc.201100733 CrossRefGoogle Scholar
  11. 11.
    Adhikari, R.Y., Malvankar, N.S., Tuominen, M.T., Lovley, D.R.: Conductivity of individual Geobacter pili. RSC Adv. 6, 8354–8357 (2016).  https://doi.org/10.1039/C5RA28092C CrossRefGoogle Scholar
  12. 12.
    Vargas, M., Malvankar, N.S., Tremblay, P.-L., Leang, C., Smith, J.A., Patel, P., Snoeyenbos-West, O., Synoeyenbos-West, O., Nevin, K.P., Lovley, D.R.: Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio 4, e00105 (2013).  https://doi.org/10.1128/mBio.00105-13
  13. 13.
    Smith, D.M.A., Rosso, K.M.: Possible dynamically gated conductance along heme wires in bacterial multiheme cytochromes. J. Phys. Chem. B 118, 8505–8512 (2014).  https://doi.org/10.1021/jp502803y CrossRefGoogle Scholar
  14. 14.
    El-Naggar, M.Y., Gorby, Y.A., Xia, W., Nealson, K.H.: The molecular density of states in bacterial nanowires. Biophys. J. 95, L10–L12 (2008).  https://doi.org/10.1529/biophysj.108.134411 CrossRefGoogle Scholar
  15. 15.
    Breuer, M., Rosso, K.M., Blumberger, J., Butt, J.N.: Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J. R. Soc. Interface 12, 20141117 (2015).  https://doi.org/10.1098/rsif.2014.1117 CrossRefGoogle Scholar
  16. 16.
    Yan, H., Chuang, C., Zhugayevych, A., Tretiak, S., Dahlquist, F.W., Bazan, G.C.: Inter-aromatic distances in Geobacter sulfurreducens pili relevant to biofilm charge transport. Adv. Mater. 27, 1908–1911 (2015).  https://doi.org/10.1002/adma.201404167 CrossRefGoogle Scholar
  17. 17.
    Grebenko, A., Dremov, V., Barzilovich, P., Bubis, A., Sidoruk, K., Voeikova, T., Gagkaeva, Z., Chernov, T., Korostylev, E., Gorshunov, B., Motovilov, K.: Impedance spectroscopy of single bacterial nanofilament reveals water-mediated charge transfer. PLoS ONE 13, 1–17 (2018).  https://doi.org/10.1371/journal.pone.0191289
  18. 18.
    Zaytsev, K.I., Kudrin, K.G., Karasik, V.E., Reshetov, I. V., Yurchenko, S.O.: In vivo terahertz spectroscopy of pigmentary skin nevi: pilot study of non-invasive early diagnosis of dysplasia. Appl. Phys. Lett. 106, (2015).  https://doi.org/10.1063/1.4907350
  19. 19.
    Dressel, M., Gruner, G.: Electrodynamics of Solids. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  20. 20.
    Motovilov, K.A., Savinov, M., Zhukova, E.S., Pronin, A.A., Gagkaeva, Z. V., Grinenko, V., Sidoruk, K. V., Voeikova, T.A., Barzilovich, P.Y., Grebenko, A.K., Lisovskii, S. V., Torgashev, V.I., Bednyakov, P., Pokorný, J., Dressel, M., Gorshunov, B.P.: Observation of dielectric universalities in albumin, cytochrome c and Shewanella oneidensis MR-1 extracellular matrix. Sci. Rep. 7, 15731 (2017).  https://doi.org/10.1038/s41598-017-15693-y
  21. 21.
    Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Richardson, D.J., Butt, J.N., Fredrickson, J.K., Zachara, J.M., Shi, L., Edwards, M.J., White, G., Baiden, N., Gates, A.J., Marritt, S.J., Clarke, T.A.: The “porin-cytochrome” model for microbe-to-mineral electron transfer. Mol. Microbiol. 85, 201–212 (2012).  https://doi.org/10.1111/j.1365-2958.2012.08088.x CrossRefGoogle Scholar
  23. 23.
    Gorshunov, B., Volkov, A., Spektor, I., Prokhorov, A., Mukhin, A., Dressel, M., Uchida, S., Loidl, A.: Terahertz BWO-spectrosopy. Int. J. Infrared Millimeter Waves 26, 1217–1240 (2005).  https://doi.org/10.1007/s10762-005-7600-y ADSCrossRefGoogle Scholar
  24. 24.
    Born, M., Wolf, E.: Principles of Optics. Pergamon, Oxford (1980)Google Scholar
  25. 25.
    Downing, H.D., Williams, D.: Optical constants of water in the infrared. J. Geophys. Res. 80, 1656–1661 (1975).  https://doi.org/10.1029/JC080i012p01656 ADSCrossRefGoogle Scholar
  26. 26.
    Zelsmann, H.R.: Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region. J. Mol. Struct. 350, 95–114 (1995).  https://doi.org/10.1016/0022-2860(94)08471-S ADSCrossRefGoogle Scholar
  27. 27.
    Liebe, H.J., Hufford, G.A., Manabe, T.: A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millimeter Waves 12, 659–675 (1991).  https://doi.org/10.1007/BF01008897
  28. 28.
    Grdadolnik, J., Marechal, Y.: Bovine serum albumin observed by infrared spectrometry. II. Hydration mechanisms and interaction configurations of embedded H2O molecules. Biopolymers 62, 54–67 (2001).  https://doi.org/10.1002/1097-0282(2001)62:1<54::AID-BIP70>3.0.CO;2-4
  29. 29.
    Grdadolnik, J., Marechal, Y.: Bovine serum albumin observed by infrared spectrometry. I. Methodology, structural investigation, and water uptake. Biopolymers 62, 40–53 (2001).  https://doi.org/10.1002/1097-0282(2001)62:1<40::AID-BIP60>3.0.CO;2-C CrossRefGoogle Scholar
  30. 30.
    Thielges, M.C., Zimmermann, J., Dawson, P.E., Romesberg, F.E.: The determinants of stability and folding in evolutionarily diverged cytochromes c. J. Mol. Biol. 388, 159–167 (2009).  https://doi.org/10.1016/j.jmb.2009.02.059 CrossRefGoogle Scholar
  31. 31.
    Heimburg, T., Marsh, D.: Investigation of secondary and tertiary structural changes of cytochrome c in complexes with anionic lipids using amide hydrogen exchange measurements: an FTIR study. Biophys. J. 65, 2408–2417 (1993).  https://doi.org/10.1016/S0006-3495(93)81299-2 CrossRefGoogle Scholar
  32. 32.
    Ye, M., Zhang, Q.-L., Li, H., Weng, Y.-X., Wang, W.-C., Qiu, X.-G.: Infrared spectroscopic discrimination between the loop and α-helices and determination of the loop diffusion kinetics by temperature-jump time-resolved infrared spectroscopy for cytochrome c. Biophys. J. 93, 2756–2766 (2007).  https://doi.org/10.1529/biophysj.107.106799 ADSCrossRefGoogle Scholar
  33. 33.
    von Hippel, A.R.: The dielectric relaxation spectra of water, ice, and aqueous solutions, and their interpretation. I. Critical survey of the status-quo for water. IEEE Trans. Electr. Insul. 23, 801–816 (1988).  https://doi.org/10.1109/14.8745 CrossRefGoogle Scholar
  34. 34.
    Eisenberg, D., Kautzmann, W.: The Structure and Properties of Water. Oxford University Press, New York (1969)Google Scholar
  35. 35.
    Yamamoto, N., Ohta, K., Tamura, A., Tominaga, K.: Broadband dielectric spectroscopy on lysozyme in the sub-gigahertz to terahertz frequency regions: effects of hydration and thermal excitation. J. Phys. Chem. B 120, 4743–4755 (2016).  https://doi.org/10.1021/acs.jpcb.6b01491 CrossRefGoogle Scholar
  36. 36.
    Urabe, H., Sugawara, Y., Ataka, M., Rupprecht, A.: Low-frequency Raman spectra of lysozyme crystals and oriented DNA films: dynamics of crystal water. Biophys. J. 74, 1533–1540 (1998).  https://doi.org/10.1016/S0006-3495(98)77865-8 ADSCrossRefGoogle Scholar
  37. 37.
    Nakanishi, M., Sokolov, A.P.: Protein dynamics in a broad frequency range: dielectric spectroscopy studies. J. Non-Cryst. Solids 407, 478–485 (2015).  https://doi.org/10.1016/j.jnoncrysol.2014.08.057 ADSCrossRefGoogle Scholar
  38. 38.
    Khodadadi, S., Pawlus, S., Sokolov, A.P.: Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data. J. Phys. Chem. B 112, 14273–14280 (2008).  https://doi.org/10.1021/jp8059807 CrossRefGoogle Scholar
  39. 39.
    Bertie, J.E., Labbé, H.J., Whalley, E.: Absorptivity of ice I in the range 4000–30 cm−1. J. Chem. Phys. 50, 4501–4520 (1969).  https://doi.org/10.1063/1.1670922 ADSCrossRefGoogle Scholar
  40. 40.
    Buckingham, A.D.: The hydrogen bond, and the structure and properties of H20 and (H20)2. J. Mol. Struct. 250, 111–118 (1991).  https://doi.org/10.1016/0022-2860(91)85023-V ADSCrossRefGoogle Scholar
  41. 41.
    Bagchi, B.: Water dynamics in the hydration layer around proteins and micelles. (2005).  https://doi.org/10.1021/CR020661+
  42. 42.
    Qvist, J., Persson, E., Mattea, C., Halle, B.: Time scales of water dynamics at biological interfaces: peptides, proteins and cells. Faraday Discuss. 141, 131–144. discussion 175-207 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Sasisanker, P., Weingärtner, H.: Hydration dynamics of water near an amphiphilic model peptide at low hydration levels: a dielectric relaxation study. ChemPhysChem 9, 2802–2808 (2008).  https://doi.org/10.1002/cphc.200800508 CrossRefGoogle Scholar
  44. 44.
    Khodadadi, S., Sokolov, A.P.: Protein dynamics: from rattling in a cage to structural relaxation. Soft Matter 11, 4984–4998 (2015).  https://doi.org/10.1039/C5SM00636H ADSCrossRefGoogle Scholar
  45. 45.
    He, Y., Chen, J.-Y., Knab, J.R., Zheng, W., Markelz, A.G.: Evidence of protein collective motions on the picosecond timescale. Biophys. J. 100, 1058–1065 (2011).  https://doi.org/10.1016/j.bpj.2010.12.3731 ADSCrossRefGoogle Scholar
  46. 46.
    Markelz, A.G., Knab, J.R., Chen, J.Y., He, Y.: Protein dynamical transition in terahertz dielectric response. Chem. Phys. Lett. 442, 413–417 (2007).  https://doi.org/10.1016/j.cplett.2007.05.080 ADSCrossRefGoogle Scholar
  47. 47.
    Chen, J.-Y., Knab, J.R., Cerne, J., Markelz, A.G.: Large oxidation dependence observed in terahertz dielectric response for cytochrome c. Phys. Rev. E 72, 40901 (2005).  https://doi.org/10.1103/PhysRevE.72.040901 ADSCrossRefGoogle Scholar
  48. 48.
    Yamamoto, K., Tominaga, K., Sasakawa, H., Tamura, A., Murakami, H., Ohtake, H., Sarukura, N.: Far-infrared absorption measurements of polypeptides and cytochrome c by THz radiation. Bull. Chem. Soc. Jpn. 75, 1083–1092 (2002).  https://doi.org/10.1246/bcsj.75.1083 CrossRefGoogle Scholar
  49. 49.
    Markelz, A., Roitberg, A., Heilweil, E.: Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320, 42–48 (2000).  https://doi.org/10.1016/S0009-2614(00)00227-X ADSCrossRefGoogle Scholar
  50. 50.
    Mernea, M., Calborean, O., Grigore, O., Dascalu, T., Mihailescu, D.F.: Validation of protein structural models using THz spectroscopy: a promising approach to solve three-dimensional structures. Opt. Quant. Electron. 46, 505–514 (2014).  https://doi.org/10.1007/s11082-013-9872-0 CrossRefGoogle Scholar
  51. 51.
    Acbas, G., Niessen, K.A., Snell, E.H., Markelz, A.G.: Optical measurements of long-range protein vibrations. Nat. Commun. 6, 3076 (2014).  https://doi.org/10.1038/ncomms4076 CrossRefGoogle Scholar
  52. 52.
    Balu, R., Zhang, H., Zukowski, E., Chen, J.-Y., Markelz, A.G., Gregurick, S.K.: Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences. Biophys. J. 94, 3217–3226 (2008).  https://doi.org/10.1529/biophysj.107.105163 ADSCrossRefGoogle Scholar
  53. 53.
    Xu, J., Plaxco, K.W., Allen, S.J.: Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci. 15, 1175–1181 (2006).  https://doi.org/10.1110/ps.062073506 CrossRefGoogle Scholar
  54. 54.
    Markelz, A., Whitmire, S., Hillebrecht, J., Birge, R.: THz time domain spectroscopy of biomolecular conformational modes. Phys. Med. Biol. 47, 3797–3805 (2002).  https://doi.org/10.1088/0031-9155/47/21/318 CrossRefGoogle Scholar
  55. 55.
    Balog, E., Becker, T., Oettl, M., Lechner, R., Daniel, R., Finney, J., Smith, J.C.: Direct determination of vibrational density of states change on ligand binding to a protein. Phys. Rev. Lett. 93, 28103 (2004).  https://doi.org/10.1103/PhysRevLett.93.028103 ADSCrossRefGoogle Scholar
  56. 56.
    MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).  https://doi.org/10.1021/jp973084f CrossRefGoogle Scholar
  57. 57.
    Smith, J.C.: Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Q. Rev. Biophys. 24, 227–291 (1991)CrossRefGoogle Scholar
  58. 58.
    Hayward, S., Kitao, A., Hirata, F., Gō, N.: Effect of solvent on collective motions in globular protein. J. Mol. Biol. 234, 1207–1217 (1993).  https://doi.org/10.1006/jmbi.1993.1671 CrossRefGoogle Scholar
  59. 59.
    Go, N., Noguti, T., Nishikawa, T.: Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. U. S. A. 80, 3696–3700 (1983)ADSCrossRefGoogle Scholar
  60. 60.
    Rasmussen, B.F., Stock, A.M., Ringe, D., Petsko, G.A.: Crystalline ribonuclease a loses function below the dynamical transition at 220 K. Nature 357, 423–424 (1992).  https://doi.org/10.1038/357423a0 ADSCrossRefGoogle Scholar
  61. 61.
    Sokolov, A.P., Roh, J.H., Mamontov, E., García Sakai, V.: Role of hydration water in dynamics of biological macromolecules. Chem. Phys. 345, 212–218 (2008).  https://doi.org/10.1016/j.chemphys.2007.07.013 CrossRefGoogle Scholar
  62. 62.
    He, Y., Ku, P., Knab, J., Chen, J., Markelz, A.: Protein dynamical transition does not require protein structure. Phys. Rev. Lett. 101, 178103 (2008).  https://doi.org/10.1103/PhysRevLett.101.178103 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  2. 2.Institute for Metallic MaterialsIFW DresdenDresdenGermany
  3. 3.Scientific Center of Russian Federation Research Institute for Genetics and Selection of Industrial MicroorganismsMoscowRussia
  4. 4.Physikalisches InstitutUniversität StuttgartStuttgartGermany

Personalised recommendations