Journal of Biological Physics

, Volume 44, Issue 3, pp 301–315 | Cite as

Toxicity impact of fenvalerate on the gill tissue of Oreochromis mossambicus with respect to biochemical changes utilizing FTIR and principal component analysis

  • B. Velmurugan
  • P. Senthilkumaar
  • S. KarthikeyanEmail author
Original Paper


The use of pesticides in agriculture can make their way into the earth and wash into the amphibian system causing ecological stress. This study aims to understand the changes occurring in gill tissues as a result of fenvalerate exposure using Fourier-transform infrared spectroscopy. The intensity ratio of the selected bands I1545/I1657, I2924/I2853, and I1045/I1545 measures changes in proteins, lipids, and carbohydrates. Curve-fitting analysis was performed in the selected band region to analyze the quantitative changes of proteins, lipids, and carbohydrates. The band area ratio of CH3/asCH2+ sCH2 shows the absence of a long chain of fatty acids due to fenvalerate treatment. The band area ratio of asCH2/sCH2 increases for higher sublethal concentrations, which shows the lower disorder of lipid acyl chain flexibility. A decrease in lipids was found in lower sublethal concentrations. The secondary structure of proteins affirms β sheet development. Carbohydrate metabolism of gill tissues demonstrates a decrease in glycogen contents. A further decrease in glycogen content and an increase in lactic acid were observed when presented to a fenvalerate concentration. PCA plots indicate distinct variations among the biochemical parameters of the gill tissues. This study provides a quantitative examination of assessing pesticide toxicity in aquatic environments.


Toxicity Pesticides Fish FTIR PCA Proteins Lipids Carbohydrates 



The authors thank S.A.I.F, I.I.T, Chennai, for help with the recording of the FTIR spectra.

Compliance with Ethical Standards

Conflict of interest

There are no known conflicts of interest among the authors associated with this work.

Ethical approval

We do not require ethical approval for carrying out experiments with fishes in India.


  1. 1.
    Pimental, D., Edwards, C.A.: Pesticides and eco-systems. Biol. Sci. 32, 595–600 (2002)Google Scholar
  2. 2.
    Singh, H.S., Reddy, T.V.: Effect of copper sulfate on hematology, blood chemistry and hepato-somatic index of an Indian catfish, Heteropneustes fossilis (Bloch), and its recovery. Ecotoxicol. Environ. Saf. 20, 20–35 (1990)CrossRefGoogle Scholar
  3. 3.
    Velmurugan, B., Selvanayagam, M., Cengiz, E.I., Unlu, E.: The effects of fenvalerate on different tissues of freshwater fish Cirrhinus mrigala. J. Environ. Sci. Health B 42, 157–163 (2007)CrossRefGoogle Scholar
  4. 4.
    Prasanthi, K., Muralidhara, P.S., Rajini, K.: Fenvalerate-induced oxidative damage in rat tissues and its attenuation by dietary sesame oil. Food Chem. Toxicol. 43, 299–306 (2005)CrossRefGoogle Scholar
  5. 5.
    Coats, J.R., Symonik, D.M., Bradbury, S.P., Dyer, S.D., Timson, L.K., Atchison, G.J.: Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environ. Toxicol. Chem. 8, 671–679 (1989)CrossRefGoogle Scholar
  6. 6.
    Gupta, A.D., Karthikeyan, S.: Individual and combined toxic effect of nickel and chromium on biochemical constituents in E. coli using FTIR spectroscopy and principal component analysis. Ecotoxicol. Environ. Saf. 130, 289–294 (2016)CrossRefGoogle Scholar
  7. 7.
    APHA: Standard Methods for the Examination of Water and Waste Water, 21st edn. American Public Health Association, Washington, DC (2005)Google Scholar
  8. 8.
    Finney, D.J.: Probit Analysis, p. 333. Cambridge University Press, Cambridge (1971)zbMATHGoogle Scholar
  9. 9.
    Toyran, N., Zorlu, F., Severcan, F.: Effect of stereo tactic radio surgery on lipids and proteins of normal and hypo fused rat brain homogenates: a Fourier-transform infrared spectroscopy study. Int. J. Radiat. Biol. 81, 911–918 (2005)CrossRefGoogle Scholar
  10. 10.
    Ozek, N.S., Sara, Y., Onur, R., Severcan, F.: Low-dose simvastatin induces compositional, structural and dynamical changes in rat skeletal extensor digitorium longus muscle tissue. Biosci. Rep. 30, 41–50 (2010)Google Scholar
  11. 11.
    Bozkurt, O., Severcan, M., Severcan, F.: Diabetes induces compositional structural and functional alteration on rat skeletal soleus muscle revealed by FTIR spectroscopy: a comparative study with EDL muscle. Analyst 135(12), 3110–3119 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Ozaki, Y., Kaneuchi, F.: Nondestructive analysis of biological materials by ATR/FT-IR spectroscopy. Part II: potential of the ATR method in clinical studies of the internal organs. Appl. Spectrosc. 43, 723–725 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    Melin, A.M., Perromat, A., Deleris, G.: Fourier-transform infrared spectroscopy: a pharmacotoxicologic tool for in vivo monitoring radical aggression. Can. J. Physiol. Pharmacol. 165, 158–165 (2001)CrossRefGoogle Scholar
  14. 14.
    Evans, H.W., Hardison, W.G.: Phospholipid, cholesterol, polypeptide and glycoprotein compositions of hepatic endosome subtraction. Biochem. J. 232, 33–36 (1985)CrossRefGoogle Scholar
  15. 15.
    Haris, P.I., Sevecan, F.: FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J. Mol. Catal. B Enzym. 7, 207–221 (1999)CrossRefGoogle Scholar
  16. 16.
    Karthikeyan, S.: Effect of heavy metals mixture nickel and chromium on tissue proteins of an edible fish Cirrhinus mrigala using FTIR and ICP-AES study. Romanian J. Biophys. 24(2), 109–116 (2014)Google Scholar
  17. 17.
    Ibarguren, M., Lopez, D.J., Escriba, P.V.: The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim. Biophys. Acta 1838(6), 1518–1528 (2014)CrossRefGoogle Scholar
  18. 18.
    Khan, S.A., Liu, X., Li, H., Li, J., Zhou, P., ur Rehman, Z., Rehman, U.K.: Cd2+ and Pb2+ induced structural, functional and compositional changes in the liver and muscle tissue of crucian carp (Carassius auratus gibelio): an FT-IR study. Turk. J. Fish. Aquat. Sci. 17, 135–143 (2017)CrossRefGoogle Scholar
  19. 19.
    Simon, L.M., Nemcsok, J., Boross, L.: Studies on the effect of paraquate on glycogen mobilization in liver of common carp Cyprinus carpio L. Comp. Biochem. Physiol. 75C(1), 167–169 (1983)Google Scholar
  20. 20.
    Javed, M., Usmani, N.: Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by thermal power plant effluent. Saudi J. Biol. Sci. 22, 237–242 (2015)CrossRefGoogle Scholar
  21. 21.
    Arzate-Cárdenas, M.A., Martínez-Jerónimo, F.: Energy reserve modification in different age groups of Daphnia schoedleri (Anomopoda: Daphniidae) exposed to hexavalent chromium. Environ. Toxicol. Pharmacol. 34, 106–116 (2012)CrossRefGoogle Scholar
  22. 22.
    Cakmak, G., Togan, I., Uguz, C., Severcan, F., et al.: Appl. Spectrosc. 57(7), 835–0841 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Wong, P.T.T., Papavassiliou, E.D., Rigas, B.: Phosphodiester stretching bands in the infrared spectra of human tissues and cultured cells. Appl. Spectrosc. 45, 1563–1567 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    Rigas, B., Morgello, S., Goldman, I.S., Wong, P.T.T.: Human colorectal cancers display abnormal Fourier-transform infrared spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 87, 8140–8144 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    Takahashi, H., French, S.M., Wong, P.T.T.: Alteration in hepatic lipids and proteins by chronic ethanol intake a high-pressure Fourier-transform infrared spectroscopic study on alcoholic liver disease in the rat. Alcohol Clin. Exp. Res. 15, 219–223 (1991)CrossRefGoogle Scholar
  26. 26.
    Cakmak, G., Togan, I., Severcan, F.: 17β estradiol induced compositional structural and functional changes in rainbow trout liver revealed by FTIR spectroscopy: a comparative study with nonylhenol. Aquat. Toxicol. 77(1), 53–63 (2006)CrossRefGoogle Scholar
  27. 27.
    Staniszewska, E., Malek, K., Branska, M.: Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 981–986 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Kardas, M., Gozen, A.G., Severcan, F.: FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. Aquat. Toxicol. 155, 15–23 (2014)CrossRefGoogle Scholar
  29. 29.
    Korkmaz, F., Severcan, F.: Effect of progesterone on DPPC membrane: evidence for lateral phase separation and inverse action in lipid dynamics. Arch. Biochem. Biophys. 440, 141–147 (2005)CrossRefGoogle Scholar
  30. 30.
    Ozek, N.S., Bal, I.B., Sara, Y., Onur, R., Severcan, F.: Structural and functional characterization of simvastatin-induced myotoxicity in different skeletal muscles. Biochim. Biophys. Acta 1840, 406–415 (2014)CrossRefGoogle Scholar
  31. 31.
    Tilak, K.S., Wilson raju, P., Butchiram, M.S.: Effects of alachlor on biochemical parameters of the freshwater fish, Channa punctatus (Bloch). J. Environ. Biol. 30(3), 421–426 (2009)Google Scholar
  32. 32.
    Cappon, I.D., Nicholas, D.M.: Factors involved in increased protein synthesis in liver microsomes after administration of DDT. Pestic. Biochem. Physiol. 5, 109–118 (1975)CrossRefGoogle Scholar
  33. 33.
    Umminger, B.L.: Physiological studies on supercooled kill fish Fundulus heteroclitus. III: carbohydrate metabolism and survival at sub zero temperature. J. Exp. Zool. 173, 159–174 (1970)CrossRefGoogle Scholar
  34. 34.
    Shobha rani, A., Sudharsan, R., Reddy, T.N., Reddy, P.V.M., Raju, T.N.: Effect of sodium arsenite on glucose and glycogen levels in freshwater teleost fish, Tilapia mossambica. Pollut. Res. 19(1), 129–131 (2000)Google Scholar
  35. 35.
    David, M., Mushigeri, S.B., Prasanth, M.S.: Toxicity of fenvalerate to the freshwater fish Labeo rohita (Hamilton). Geobios 29, 25–28 (2002)Google Scholar
  36. 36.
    Amacher, D.E.: A toxicologist’s guide to biomarkers of hepatic response. Hum. Exp. Toxicol. 21(5), 253–262 (2002)CrossRefGoogle Scholar
  37. 37.
    Agrahari, S., Pandey, K.C., Gopal, K.: Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pestic. Biochem. Physiol. 88(3), 268–272 (2007)CrossRefGoogle Scholar
  38. 38.
    Samuel, M., Sastry, K.V.: In vivo effect of monocrotophos on the carbohydrate metabolism of the freshwater snakehead fish Channa punctatus. Pestic. Biochem. Physiol. 34, 1–8 (1989)CrossRefGoogle Scholar
  39. 39.
    Cox, M.M., Nelson, D.L.: Lehninger’s Principles of Biochemistry, 5th edn, pp. 570–572. W.H. Freeman, New York (1989)Google Scholar
  40. 40.
    Furlan, P.Y., Scott, S.A., Peaslee, M.H.: FTIR STR study of pH effect on egg albumin secondary structure. Spectrosc. Lett. 40, 475–482 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Karthikeyan, S., Easwaran, R.: Analysis of a curve fitting model in the amide region applied to the muscle tissues of an edible fish: Labeo rohita fingerlings. J. Biol. Phys. Chem. 13, 125–130 (2013)CrossRefGoogle Scholar
  42. 42.
    Creighton, T.E.: Pathway and mechanisms of protein folding. Adv. Biophys. 18, 1–20 (1984)CrossRefGoogle Scholar
  43. 43.
    Palaniappan, P.L.R.M., Renju, V.B.: FT-IR study of the effect of zinc exposure on the biochemical contents of the muscle of Labeo rohita. Infrared Phys. Technol. 52, 37–41 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Palaniappan, P.L.R.M., Nishanth, T., Renju, V.B.: Bioconcentration of zinc and its effect on the biochemical constituents of the gill tissues of Labeo rohita: an FT-IR study. Infrared Phys. Technol. 53, 103–111 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Nayak, A.K., Das, B.K., Kohli, M.P.S., Mukherjee, S.C.: The immunosuppressive effect of a-permethrin on Indian major carp, rohu (Labeo rohita Ham). Fish Shellfish Immunol. 16, 41–50 (2004)CrossRefGoogle Scholar
  46. 46.
    Jee, J.H., Masroor, F., Kang, J.C.: Responses of cypermethrin-induced stress in haematological parameters of Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquat. Res. 36(9), 898–905 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.P.G. & Research Department of ZoologySir Theagaraya CollegeChennaiIndia
  2. 2.Department of PhysicsDr. Ambedkar Government Arts CollegeChennaiIndia

Personalised recommendations