Journal of Behavioral Medicine

, Volume 42, Issue 3, pp 502–510 | Cite as

Physical activity, sitting, and risk factors of cardiovascular disease: a cross-sectional analysis of the CARRS study

  • Jingkai WeiEmail author
  • Ranjit Mohan Anjana
  • Shifalika Goenka
  • Felipe Lobelo
  • Roopa Shivashankar
  • Muhammad Masood Kadir
  • Nikhil Tandon
  • Viswanathan Mohan
  • K. M. Venkat Narayan
  • Dorairaj Prabhakaran
  • Mohammed K. Ali


We aimed to estimate the associations between substituting 30-min/day of walking or moderate-to-vigorous physical activity (MVPA) for 30 min/day of sitting and cardiovascular risk factors in a South Asian population free of cardiovascular disease. We collected information regarding sitting and physical activity from a representative sample of 6991 participants aged 20 years and above from New Delhi, India and Karachi, Pakistan enrolled in 2010–2011 in the Center for cArdio-metabolic Risk Reduction in South Asia study using the International Physical Activity Questionnaire (short form). We conducted isotemporal substitution analyses using multivariable linear regression models to examine the cross-sectional associations between substituting MVPA and walking for sitting with cardiovascular risk factors. Substituting 30 min/day of MVPA for 30 min/day of sitting was associated with 0.08 mmHg lower diastolic blood pressure (β = −0.08 [− 0.15, − 0.0003]) and 0.13 mg/dl higher high-density lipoprotein cholesterol (β = 0.13 [0.04, 0.22]). Substituting 30 min/day of walking for 30 min/day of sitting was associated with 0.08 kg/m2 lower body mass index (β = −0.08 [− 0.15, − 0.02]), and 0.25 cm lower waist circumference (β = −0.25 [− 0.39, − 0.11]). In conclusion, substituting time engaged in more-active pursuits for time engaged in less-active pursuits was associated with modest but favorable cardiovascular risk factor improvements among South Asians.


Physical activity Sitting Cardiovascular risk factor Isotemporal substitution models South Asia 



The authors thank all CARRS participants and staff for the providing information for this study.


This project was funded in part by the National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, under Contract No. HHSN268200900026C, and the United Health Group, Minneapolis, MN, US.

Compliance with ethical standards

Conflict of interest

Jingkai Wei, Ranjit Mohan Anjana, Shifalika Goenka, Felipe Lobelo, Roopa Shivashankar, Muhammad Masood Kadir, Nikhil Tandon, Viswanathan Mohan, K. M. Venkat Narayan, Dorairaj Prabhakaran and Mohammed K. Ali declares that they have no conflict of interest.

Human and animal rights and Informed consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

Supplementary material

10865_2018_9989_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Ali, M. K., Bhaskarapillai, B., Shivashankar, R., Mohan, D., Fatmi, Z. A., Pradeepa, R., et al. (2015). Socioeconomic status and cardiovascular risk in urban South Asia: The CARRS Study. European Journal of Preventive Cardiology. Google Scholar
  2. Anjana, R. M., Pradeepa, R., Das, A. K., Deepa, M., Bhansali, A., Joshi, S. R., et al. (2014). Physical activity and inactivity patterns in India—Results from the ICMR-INDIAB study (Phase-1) [ICMR-INDIAB-5]. International Journal of Behavioral Nutrition and Physical Activity, 11, 26. CrossRefGoogle Scholar
  3. Aravindalochanan, V., Kumpatla, S., Rengarajan, M., Rajan, R., & Viswanathan, V. (2014). Risk of diabetes in subjects with sedentary profession and the synergistic effect of positive family history of diabetes. Diabetes Technology and Therapeutics, 16, 26–32. CrossRefGoogle Scholar
  4. Buman, M. P., Winkler, E. A., Kurka, J. M., Hekler, E. B., Baldwin, C. M., Owen, N., et al. (2014). Reallocating time to sleep, sedentary behaviors, or active behaviors: Associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. American Journal of Epidemiology, 179, 323–334. CrossRefGoogle Scholar
  5. Ekblom-Bak, E., Ekblom, O., Bergstrom, G., & Borjesson, M. (2015). Isotemporal substitution of sedentary time by physical activity of different intensities and bout lengths, and its associations with metabolic risk. European Journal of Preventive Cardiology. Google Scholar
  6. Falconer, C. L., Page, A. S., Andrews, R. C., & Cooper, A. R. (2015). The potential impact of displacing sedentary time in adults with Type 2 diabetes. Medicine and Science in Sports and Exercise, 47, 2070–2075. CrossRefGoogle Scholar
  7. Fishman, E. I., Steeves, J. A., Zipunnikov, V., Koster, A., Berrigan, D., Harris, T. A., et al. (2016). Association between objectively measured physical activity and mortality in NHANES. Medicine and Science in Sports and Exercise. Google Scholar
  8. Forouzanfar, M. H., Alexander, L., Anderson, H. R., Bachman, V. F., Biryukov, S., Brauer, M., et al. (2015). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 386, 2287–2323. CrossRefGoogle Scholar
  9. Hamer, M., Stamatakis, E., & Steptoe, A. (2014). Effects of substituting sedentary time with physical activity on metabolic risk. Medicine and Science in Sports and Exercise, 46, 1946–1950. CrossRefGoogle Scholar
  10. Healy, G. N., Winkler, E. A., Brakenridge, C. L., Reeves, M. M., & Eakin, E. G. (2015). Accelerometer-derived sedentary and physical activity time in overweight/obese adults with type 2 diabetes: Cross-sectional associations with cardiometabolic biomarkers. PLoS ONE, 10, e0119140. CrossRefGoogle Scholar
  11. IPAQ. (2004a). Retrieved 16 July 2018, from
  12. IPAQ. (2004b). Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short Form. Retrieved 16 July 2018, from
  13. Jd, V. D. B., Jhpm, V. D. V., Eac, D. E. W., Bosma, H., Savelberg, H., Schaper, N. C., et al. (2017). Replacement effects of sedentary time on metabolic outcomes: The Maastricht study. Medicine and Science in Sports and Exercise, 49, 1351–1358. CrossRefGoogle Scholar
  14. Johns, D. J., Hartmann-Boyce, J., Jebb, S. A., & Aveyard, P. (2014). Diet or exercise interventions vs combined behavioral weight management programs: A systematic review and meta-analysis of direct comparisons. Journal of the Academy of Nutrition and Dietetics, 114, 1557–1568. CrossRefGoogle Scholar
  15. Kamath, S. K., Hussain, E. A., Amin, D., Mortillaro, E., West, B., Peterson, C. T., et al. (1999). Cardiovascular disease risk factors in 2 distinct ethnic groups: Indian and Pakistani compared with American premenopausal women. American Journal of Clinical Nutrition, 69, 621–631. CrossRefGoogle Scholar
  16. Koolhaas, C. M., Dhana, K., Golubic, R., Schoufour, J. D., Hofman, A., van Rooij, F. J. A., et al. (2016). Physical activity types and coronary heart disease risk in middle-aged and elderly persons: The Rotterdam Study. American Journal of Epidemiology, 183, 729–738. CrossRefGoogle Scholar
  17. Lee, P. H., Macfarlane, D. J., Lam, T. H., & Stewart, S. M. (2011). Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 8, 115. CrossRefGoogle Scholar
  18. Mekary, R. A., Lucas, M., Pan, A., Okereke, O. I., Willett, W. C., Hu, F. B., et al. (2013). Isotemporal substitution analysis for physical activity, television watching, and risk of depression. American Journal of Epidemiology, 178, 474–483. CrossRefGoogle Scholar
  19. Mekary, R. A., Willett, W. C., Hu, F. B., & Ding, E. L. (2009). Isotemporal substitution paradigm for physical activity epidemiology and weight change. American Journal of Epidemiology, 170, 519–527. CrossRefGoogle Scholar
  20. Millett, C., Agrawal, S., Sullivan, R., Vaz, M., Kurpad, A., Bharathi, A. V., et al. (2013). Associations between active travel to work and overweight, hypertension, and diabetes in India: A cross-sectional study. PLOS Medicine, 10, e1001459. CrossRefGoogle Scholar
  21. Misra, A., Nigam, P., Hills, A. P., Chadha, D. S., Sharma, V., Deepak, K. K., et al. (2012). Consensus physical activity guidelines for Asian Indians. Diabetes Technol Ther, 14, 83–98. CrossRefGoogle Scholar
  22. Moran, A., & Vedanthan, R. (2013). Cardiovascular disease prevention in South Asia gathering the evidence. Global heart, 8, 139–140. CrossRefGoogle Scholar
  23. Nag, T., & Ghosh, A. (2013). Cardiovascular disease risk factors in Asian Indian population: A systematic review. Journal of Cardiovascular Disease Research, 4, 222–228. Google Scholar
  24. Nair, M., Ali, M. K., Ajay, V. S., Shivashankar, R., Mohan, V., Pradeepa, R., et al. (2012). CARRS Surveillance study: Design and methods to assess burdens from multiple perspectives. BMC Public Health, 12, 701. CrossRefGoogle Scholar
  25. Nethan, S., Sinha, D., & Mehrotra, R. (2017). Non communicable disease risk factors and their trends in India. Asian Pacific Journal of Cancer Prevention: APJCP, 18, 2005–2010. Google Scholar
  26. Prabhakaran, D., Jeemon, P., & Roy, A. (2016). Cardiovascular diseases in India: Current epidemiology and future directions. Circulation, 133, 1605–1620. CrossRefGoogle Scholar
  27. Quan, S. F., Howard, B. V., Iber, C., Kiley, J. P., Nieto, F. J., O’Connor, G. T., et al. (1997). The sleep heart health study: Design, rationale, and methods. Sleep, 20, 1077–1085.Google Scholar
  28. Rastogi, T., Vaz, M., Spiegelman, D., Reddy, K. S., Bharathi, A. V., Stampfer, M. J., et al. (2004). Physical activity and risk of coronary heart disease in India. International Journal of Epidemiology, 33, 759–767. CrossRefGoogle Scholar
  29. Shenoy, S., Chawla, J. K., & Sandhu, J. S. (2014). Validation of short international physical activity questionnaire Punjabi version in India. Saudi Journal of Sports Medicine, 14, 77.CrossRefGoogle Scholar
  30. Siegel, K. R., Patel, S. A., & Ali, M. K. (2014). Non-communicable diseases in South Asia: Contemporary perspectives. British Medical Bulletin, 111, 31–44. CrossRefGoogle Scholar
  31. Stamatakis, E., Rogers, K., Ding, D., Berrigan, D., Chau, J., Hamer, M., et al. (2015). All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: A prospective study of 201,129 mid-aged and older adults. Int J Behav Nutr Phys Act, 12, 121. CrossRefGoogle Scholar
  32. Tanasescu, M., Leitzmann, M. F., Rimm, E. B., Willett, W. C., Stampfer, M. J., & Hu, F. B. (2002). Exercise type and intensity in relation to coronary heart disease in men. JAMA, 288, 1994–2000. CrossRefGoogle Scholar
  33. Wellburn, S., Ryan, C. G., Azevedo, L. B., Ells, L., Martin, D. J., Atkinson, G., et al. (2015). Displacing Sedentary Time: Association with Cardiovascular Disease Prevalence. Medicine and Science in Sports and Exercise. Google Scholar
  34. Willett, W., & Stampfer, M. J. (1986). Total energy intake: Implications for epidemiologic analyses. American Journal of Epidemiology, 124, 17–27.CrossRefGoogle Scholar
  35. Wilmot, E. G., Edwardson, C. L., Achana, F. A., Davies, M. J., Gorely, T., Gray, L. J., et al. (2012). Sedentary time in adults and the association with diabetes, cardiovascular disease and death: Systematic review and meta-analysis. Diabetologia, 55, 2895–2905. CrossRefGoogle Scholar
  36. Yusuf, S., Hawken, S., Ounpuu, S., Dans, T., Avezum, A., Lanas, F., et al. (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet, 364, 937–952. CrossRefGoogle Scholar
  37. Zachariah, G., & Alex, A. (2017). Exercise for prevention of cardiovascular disease: Evidence-based recommendations. Journal of Clinical and Preventive Cardiology, 6, 109–114. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jingkai Wei
    • 1
    Email author
  • Ranjit Mohan Anjana
    • 2
  • Shifalika Goenka
    • 3
  • Felipe Lobelo
    • 4
  • Roopa Shivashankar
    • 5
  • Muhammad Masood Kadir
    • 6
  • Nikhil Tandon
    • 7
  • Viswanathan Mohan
    • 2
  • K. M. Venkat Narayan
    • 4
  • Dorairaj Prabhakaran
    • 3
    • 5
  • Mohammed K. Ali
    • 4
  1. 1.Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Madras Diabetes Research FoundationChennaiIndia
  3. 3.Public Health Foundation of IndiaNew DelhiIndia
  4. 4.Emory Global Diabetes Research Center, Hubert Department of Global HealthEmory UniversityAtlantaUSA
  5. 5.Centre for Chronic Disease ControlNew DelhiIndia
  6. 6.Aga Khan UniversityKarachiPakistan
  7. 7.All India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations