Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 50, Issue 6, pp 425–435 | Cite as

Thylakoid membrane unstacking increases LHCII thermal stability and lipid phase fluidity

  • Nia Petrova
  • Svetla Todinova
  • Momchil Paunov
  • Lászlo Kovács
  • Stefka Taneva
  • Sashka KrumovaEmail author
Article
  • 169 Downloads

Abstract

Thylakoids are highly protein-enriched membranes that harbor a number of multicomponent photosynthetic complexes. Similarly to other biological membranes the protein constituents are heterogeneously distributed laterally in the plane of the membrane, however the specific segregation into stacked (grana patches) and unstacked (stroma lamellae) membrane layers is a unique feature of the thylakoid. Both the lateral and the vertical arrangements of the integral membrane proteins within the three-dimensional thylakoid ultrastructure are thought to have important physiological function. In this work we explore the role of membrane stacking for the thermal stability of the photosynthetic complexes in thylakoid membranes. By means of circular dichroism and differential scanning calorimetry we demonstrate that the thermal stability of the monomeric and trimeric forms of the major light harvesting complex of photosystem II (LHCII) increases upon unstacking. This effect was suggested to be due to the detachment of LHCII from photosystem II and consequent attachment to photosystem I subunits and/or the fluidization of the lipid matrix upon unstacking. The changes in the physical properties of the protein and lipid membrane components upon unstacking result in strongly reduced photosystem II excitation energy utilization.

Keywords

Thylakoid membrane Thermal stability Photosystem II LHCII Membrane stacking 

Notes

Acknowledgements

This work is supported by the Program for career development of young Scientists in the Bulgarian Academy of Sciences [grant number DFNP 17-138] (N.P.). The authors are grateful to Prof. B. Shivachev for the technical help with the fluorescence measurements.

References

  1. Akhtar P, Dorogi M, Pawlak K, Kovács L, Bóta A, Kiss T, Garab G, Lambrev PH (2015) Pigment interactions in light-harvesting complex II in different molecular environments. J Biol Chem 290(8):4877–4886PubMedGoogle Scholar
  2. Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6(7):317–326PubMedGoogle Scholar
  3. Andreeva A, Stoitchkova K, Busheva M, Apostolova E (2003) Changes in the energy distribution between chlorophyll–protein complexes of thylakoid membranes from pea mutants with modified pigment content: I. changes due to the modified pigment content. J Photochem Photobiol B: Biology 70(3):153–162PubMedGoogle Scholar
  4. Arnon D (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15PubMedPubMedCentralGoogle Scholar
  5. Barber J (1982) Influence of surface charges on thylakoid structure and function. Annu Rev Plant Physiol 33(1):261–295Google Scholar
  6. Boichenko VA (1998) Action spectra and functional antenna sizes of photosystems I and II in relation to the thylakoid membrane organization and pigment composition. Photosynth Res 58(2):163–174Google Scholar
  7. Briantais JM, Vernotte C, Olive J, Wollman FA (1984) Kinetics of cation-induced changes of photosystem II fluorescence and of lateral distribution of the two photosystems in the thylakoid membranes of pea chloroplasts. Biochim Biophys Acta Bioenerg 766(1):1–8Google Scholar
  8. Butler WL, Kitajima M (1975) Energy transfer between photosystem II and photosystem I in chloroplasts. Biochim Biophys Acta Bioenerg 396(1):72–85Google Scholar
  9. Chow WS (1999) Grana formation: entropy-assisted local order in chloroplasts? Funct Plant Biol 26(7):641–647Google Scholar
  10. Chow WS, Kim EH, Horton P, Anderson JM (2005) Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem Photobiol Sci 4(12):1081–1090.  https://doi.org/10.1039/b507310n PubMedGoogle Scholar
  11. Dobrikova AG, Várkonyi Z, Krumova SB, Kovács L, Kostov GK, Todinova SJ, Busheva MC, Taneva SG, Garab G (2003) Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Biochemistry 42(38):11272–11280.  https://doi.org/10.1021/bi034899j PubMedGoogle Scholar
  12. Garab G (2014) Hierarchical organization and structural flexibility of thylakoid membranes. Biochim Biophys Acta 1837:481–494.  https://doi.org/10.1016/j.bbabio.2013.12.003 PubMedGoogle Scholar
  13. Garab G, Wells S, Finzi L, Bustamante C (1988) Helically organized macroaggregates of pigment-protein complexes in chloroplasts: evidence from circular intensity differential scattering. Biochemistry 27(16):5839–5843PubMedGoogle Scholar
  14. Garab G, Kieleczawa J, Sutherland JC, Bustamante C, Hind G (1991) Organization of pigment-protein complexes into macrodomains in the thylakoid membranes of wild type and chlorophyll b less mutant of barley as revealed by circular dichroism. Photochem Photobiol 54(2):273–281.  https://doi.org/10.1111/j.1751-1097.1991.tb02016.x Google Scholar
  15. Garab G, Ughy B, De Waard P, Akhtar P, Javornik U, Kotakis C, Sket P, Karlicky V, Materova Z, Spunda V, Plavec J, van Amerongen H, Vigh L, Van AH, Lambrev PH (2017) Lipid polymorphism in chloroplast thylakoid membranes–as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. Sci Rep 7(1):13343.  https://doi.org/10.1038/s41598-017-13574-y PubMedPubMedCentralGoogle Scholar
  16. Georgakopoulou S, van der Zwan G, Bassi R, van Grondelle R, van Amerongen H, Croce R (2007) Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry 46(16):4745–4754.  https://doi.org/10.1021/bi062031y PubMedGoogle Scholar
  17. Gradinaru CC, van Grondelle R, van Amerongen H (2003) Selective interaction between xanthophylls and chlorophylls in LHCII probed by femtosecond transient absorption spectroscopy. J Phys Chem B 107(16):3938–3943.  https://doi.org/10.1021/jp026278q Google Scholar
  18. Harrison MA, Melis A (1992) Organization and stability of polypeptides associated with the chlorophyll a/b light-harvesting complex of photosystem-II. Plant Cell Physiol 33(5):627–637.  https://doi.org/10.1093/oxfordjournals.pcp.a078298 Google Scholar
  19. Herbstová M, Tietz S, Kinzel C, Turkina MV, Kirchhoff H (2012) Architectural switch in plant photosynthetic membranes induced by light stress. PNAS 109(49):20130–20135.  https://doi.org/10.1073/pnas.1214265109 PubMedGoogle Scholar
  20. Holm JK, Várkonyi Z, Kovács L, Posselt D, Garab G (2005) Thermo-optically induced reorganizations in the main light harvesting antenna of plants. II. Indications for the role of LHCII-only macrodomains in thylakoids. Photosynth Res 86(1–2):275–282.  https://doi.org/10.1007/s11120-005-5302-x PubMedGoogle Scholar
  21. Jia H, Liggins JR, Chow WS (2014) Entropy and biological systems: experimentally-investigated entropy-driven stacking of plant photosynthetic membranes. Sci Rep 4:4142.  https://doi.org/10.1038/srep04142 PubMedPubMedCentralGoogle Scholar
  22. Kaftan D, Brumfeld V, Nevo R, Scherz A, Reich Z (2002) From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes. EMBO J 21(22):6146–6153PubMedPubMedCentralGoogle Scholar
  23. Karshikoff A, Nilsson L, Ladenstein R (2015) Rigidity versus flexibility: the dilemma of understanding protein thermal stability. FEBS J 282(20):3899–3917.  https://doi.org/10.1111/febs.13343 PubMedGoogle Scholar
  24. Khatoon M, Inagawa K, Pospísil P, Yamashita A, Yoshioka M, Lundin B, Horie J, Morita N, Jajoo A, Yamamoto Y, Yamamoto Y (2009) Quality control of photosystem II: thylakoid unstacking is necessary to avoid further damage to the D1 protein and to facilitate D1 degradation under light stress in spinach thylakoids. J Biol Chem 294(37):25343–25352.  https://doi.org/10.1074/jbc.M109.007740 Google Scholar
  25. Kim EH, Chow WS, Horton P, Anderson JM (2005) Entropy-assisted stacking of thylakoid membranes. Biochim Biophys Acta Bioenerg 1708(2):187–195.  https://doi.org/10.1016/j.bbabio.2005.03.011 Google Scholar
  26. Kirchhoff H (2018) Structure-function relationships in photosynthetic membranes: challenges and emerging fields. Plant Sci 266:76–82.  https://doi.org/10.1016/j.plantsci.2017.09.021 PubMedGoogle Scholar
  27. Kirchhoff H, Haase W, Haferkamp S, Schott T, Borinski M, Kubitscheck U, Rögner M (2007) Structural and functional self-organization of photosystem II in grana thylakoids. Biochim Biophys Acta Bioenerg 1767(9):1180–1188.  https://doi.org/10.1016/j.bbabio.2007.05.009 Google Scholar
  28. Krumova SB, Koehorst RB, Bóta A, Páli T, van Hoek A, Garab G, van Amerongen H (2008) Temperature dependence of the lipid packing in thylakoid membranes studied by time-and spectrally resolved fluorescence of Merocyanine 540. Biochim Biophys Acta Biomembr 1778(12):2823–2833.  https://doi.org/10.1016/j.bbamem.2008.09.007 Google Scholar
  29. Krumova SB, Todinova SJ, Dobrikova AG, Taneva SG (2010a) Differential scanning calorimetry of photosynthetic membranes: resolving contributions of the major photosynthetic complexes to the sequential thermal transitions. Trends Photochem Photobiol 12:37–51Google Scholar
  30. Krumova SB, Laptenok SP, Kovács L, Tóth T, van Hoek A, Garab G, van Amerongen H (2010b) Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes. Photosynth Res 105(3):229–242.  https://doi.org/10.1007/s11120-010-9581-5 PubMedPubMedCentralGoogle Scholar
  31. Krumova SB, Várkonyi Z, Lambrev PH, Kovács L, Todinova SJ, Busheva MC et al (2014) Heat-and light-induced detachment of the light-harvesting antenna complexes of photosystem I in isolated stroma thylakoid membranes. J Photochem Photobiol B 137:4–12  https://doi.org/10.1016/j.jphotobiol.2014.04.029 PubMedGoogle Scholar
  32. Lambrev PH, Várkonyi Z, Krumova S, Kovács L, Miloslavina Y, Holzwarth AR, Garab G (2007) Importance of trimer–trimer interactions for the native state of the plant light-harvesting complex II. Biochim Biophys Acta Bioenerg 1767(6):847–853.  https://doi.org/10.1016/j.bbabio.2007.01.010 Google Scholar
  33. Mateašik A, Šikurová L, Chorvát D Jr (2002) Interaction of merocyanine 540 with charged membranes. Bioelectrochemistry 55(1–2):173–175.  https://doi.org/10.1016/S1567-5394(01)00140-2 PubMedGoogle Scholar
  34. Mehta P, Allakhverdiev SI, Jajoo A (2010) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105(3):249–255.  https://doi.org/10.1007/s11120-010-9588-y PubMedGoogle Scholar
  35. Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Groce R, Holzwart AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582(25–26):3625–3631PubMedGoogle Scholar
  36. Nolan WG, Hopkins HP Jr, Kalini SA (1992) Differential scanning calorimetric investigation of pea chloroplast thylakoids and thylakoid fractions. Arch Biochem Biophys 297(1):19–27PubMedGoogle Scholar
  37. Pan X, Ma J, Su X, Cao P, Chang W, Liu Z, Zhang X, Li M (2018) Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360(6393):1109–1113PubMedGoogle Scholar
  38. Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65(8):1955–1972.  https://doi.org/10.1093/jxb/eru090 PubMedGoogle Scholar
  39. Puthiyaveetil S, van Oort B, Kirchhoff H (2017) Surface charge dynamics in photosynthetic membranes and the structural consequences. Nat Plants 3(4):17020.  https://doi.org/10.1038/nplants.2017.20 PubMedGoogle Scholar
  40. Rumak I, Gieczewska K, Kierdaszuk B, Gruszecki WI, Mostowska A, Mazur R, Garstka M (2010) 3-D modelling of chloroplast structure under (Mg2+) magnesium ion treatment. Relationship between thylakoid membrane arrangement and stacking. Biochim Biophys Acta Bioenerg 1797(10):1736–1748.  https://doi.org/10.1016/j.bbabio.2010.07.001 Google Scholar
  41. Sheng X, Liu X, Cao P, Li M, Liu Z (2018) Structural roles of lipid molecules in the assembly of plant PSII− LHCII supercomplex. Biophys Rep 4(4):189–203.  https://doi.org/10.1007/s41048-018-0068-9 PubMedPubMedCentralGoogle Scholar
  42. Simidjiev I, Barzda V, Mustárdy L, Garab G (1997) Isolation of lamellar aggregates of the light-harvesting chlorophyll a/b protein complex of photosystem II with long-range chiral order and structural flexibility. Anal Biochem 250(2):169–175PubMedGoogle Scholar
  43. Staehelin LA (1976) Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol 71(1):136–158PubMedGoogle Scholar
  44. Stillwell W, Wassall SR, Dumaual AC, Ehringer WD, Browning CW, Jenski LJ (1993) Use of merocyanine (MC540) in quantifying lipid domains and packing in phospholipid vesicles and tumor cells. Biochim Biophys Acta Biomembr 1146(1):136–144Google Scholar
  45. Stoichev S, Krumova SB, Andreeva T, Busto JV, Todinova S, Balashev K, Busheva M, Goni FM, Taneva SG (2015) Low pH modulates the macroorganization and thermal stability of PSII supercomplexes in grana membranes. Biophys J 108(4):844–853.  https://doi.org/10.1016/j.bpj.2014.12.042 PubMedPubMedCentralGoogle Scholar
  46. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Chlorophyll a fluorescence. Springer, Dordrecht, pp 321–362Google Scholar
  47. Szilágyi A, Selstam E, Åkerlund HE (2008) Laurdan fluorescence spectroscopy in the thylakoid bilayer: the effect of violaxanthin to zeaxanthin conversion on the galactolipid dominated lipid environment. Biochim Biophys Acta Biomembr 1778(1):348–355.  https://doi.org/10.1016/j.bbamem.2007.10.006 Google Scholar
  48. Tóth TN, Rai N, Solymosi K, Zsiros O, Schröder WP, Garab G, van Amerongen HP, Kovacs L (2016) Fingerprinting the macro-organisation of pigment–protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim Biophys Acta Bioenerg 1857(9):1479–1489.  https://doi.org/10.1016/j.bbabio.2016.04.287 Google Scholar
  49. van der Weij-de Wit CD, Ihalainen JA, van Grondelle R, Dekker JP (2007) Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy. Photosynth Res 93(1–3):173–182.  https://doi.org/10.1007/s11120-007-9157-1 PubMedGoogle Scholar
  50. van Grondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta Bioenerg 1187(1):1–65Google Scholar
  51. Wientjes E, van Amerongen H, Croce R (2013) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta Bioenerg 1827(3):420–426Google Scholar
  52. Wilson-Ashworth HA, Bahm Q, Erickson J, Shinkle A, Vu MP, Woodbury D, Bell JD (2006) Differential detection of phospholipid fluidity, order, and spacing by fluorescence spectroscopy of bis-pyrene, prodan, nystatin, and merocyanine 540. Biophys J 91(11):4091–4101.  https://doi.org/10.1529/biophysj.106.090860 PubMedPubMedCentralGoogle Scholar
  53. Yamamoto Y, Hori H, Kai S, Ishikawa T, Ohnishi A, Tsumura N, Morita N (2013) Quality control of photosystem II: reversible and irreversible protein aggregation decides the fate of photosystem II under excessive illumination. Frontiers Plant Sci 4(433).  https://doi.org/10.3389/fpls.2013.00433

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Biophysics and Radiobiology, Faculty of BiologySofia University “St. Kliment Ohridski”SofiaBulgaria
  3. 3.Biological Research CentreInstitute of Plant BiologySzegedHungary

Personalised recommendations