Pioglitazone provides beneficial effect in metabolic syndrome rats via affecting intracellular Na+ Dyshomeostasis
- 59 Downloads
Abstract
Metabolic syndrome, is associated impaired blood glucose level, insulin resistance, and dyslipidemia caused by abdominal obesity. Also, it is related with cardiovascular risk accumulation and cardiomyopathy. The hypothesis of this study was to examine the effect of thiazolidinediones such as pioglitazone on intracellular Na+ homeostasis in heart of metabolic syndrome male rats. Abdominal obesity and glucose intolerance had measured as a marker of metabolic syndrome. Intracellular Na+ concentration ([Na+]i) at rest and [Na+]i during pacing with electrical field stimulation were determined in freshly isolated cardiomyocytes. Also, TTX-sensitive Na+- channel current (INa) density and I-V characteristics of these channels were measured to understand [Na+]i homeostasis. We determined the protein levels of Na+/Ca2+ exchanger and Na+-K+ pump to understand the relation between [Na+]i homeostasis. High sucrose intake significantly increased body mass and blood glucose level of the rats in the metabolic syndrome group as compared with control group. There was a decrease in INa density and there were differences in points on activation curve of INa. Basal [Na+]i in metabolic syndrome group significantly increased but there was a significantly decrease in [Na+]i in stimulated cardiomyocytes in metabolic syndrome. Furthermore, pioglitazone induced decreases in the basal [Na+]i and preserved the decrease in INa and [Na+]i in stimulated cardiomyocytes to those of controls. Histologically, metabolic syndrome affected heart and associated tissues together with many other organs. Results of the present study suggest that pioglitazone has significant beneficial effects on metabolic syndrome associated disturbances in the heart via effecting Na+ homeostasis in cardiomyocytes.
Keywords
Pioglitazone Intracellular sodium Metabolic syndrome Sodium current Sodium homeostasisNotes
Acknowledgments
This study was supported by TUBITAK-SBAG-115S827.
Compliance with ethical standards
Conflict of interest
The authors declare no conflicts of interest relating to this manuscript.
References
- Albarado-Iban A, Avelino-Cruz JE, Velasco M, Torres-Ja’come J, Hiriart M (2013) Metabolic syndrome remodels electrical activity of the sinoatrial node and produces arrhythmias in rats. PLOS ONE 8:e76534. https://doi.org/10.1371/journal.pone.0076534 CrossRefGoogle Scholar
- Anzawa R, Bernard M, Tamareille S, Baetz D, Confort-Gouny S, Gascard JP, Cozzone P, Feuvray D (2006) Intracellular sodium increase and susceptibility to ischaemia in hearts from type 2 diabetic db/db mice. Diabetologia 49:598–606. https://doi.org/10.1007/s00125-005-0091-5 CrossRefGoogle Scholar
- Ayaz M, Can B, Ozdemir S, Turan B (2002) Protective effect of selenium treatment on diabetes-induced myocardial structural alterations. Biol Trace Elem Res 89:215–226. https://doi.org/10.1385/bter:89:3:215 CrossRefGoogle Scholar
- Bell DS (2003) Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care 26:2433–2441. https://doi.org/10.2337/diacare.26.8.2433 CrossRefGoogle Scholar
- Bers DM (2001) Excitation-contraction coupling and cardiac contractile force. 2nd ed. Dordrecht/Boston. Kluwer Academic Publishers, LondonCrossRefGoogle Scholar
- Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 93(6):487–490. https://doi.org/10.1161/01.RES.0000091871.54907.6B CrossRefGoogle Scholar
- Bilginoglu A, Kandilci HB, Turan B (2013) Intracellular levels of Na+ and TTX-sensitive Na+ channel current in diabetic rat ventricular cardiomyocytes. Cardiovasc Toxicol 13:138–147. https://doi.org/10.1007/s12012-012-9192-9 CrossRefGoogle Scholar
- Blaschke F, Spanheimer R, Khan M, Law RE (2006) Vascular effects of TZDs: new implications. Vasc Pharmacol 45:3–18. https://doi.org/10.1016/j.vph.2005.11.009 CrossRefGoogle Scholar
- Cross HR, Radda GK, Clarke K (1995) The role of Na+/K+ ATPase activity during low flow ischemia in preventing myocardial injury: a 31P, 23Na and 87Rb NMR spectroscopic study. Magn Reson Med 34:673–685. https://doi.org/10.1002/mrm.1910340505 CrossRefGoogle Scholar
- Davidoff AJ, Mason MM, Davidson MB, Carmody MW, Hintz KK, Wold LE, Podolin DA, Ren J (2004) Sucrose-induced cardiomyocytes dysfunction is both preventable and reversible with clinically relevant treatments. Am J Physiol Endocrinol Metab 286:E718–E724. https://doi.org/10.1152/ajpendo.00358.2003 CrossRefGoogle Scholar
- Despa S, Bers DM (2013) Na+ transport in the normal and failing heart—remember the balance. J Mol Cell Cardiol 61:2–10. https://doi.org/10.1016/j.yjmcc.2013.04.011 CrossRefGoogle Scholar
- Despa S, Islam MA, Pogwizd SM, Bers DM (2002) Intracellular [Na+]i and Na+-pump rate in rat and rabbit ventricular myocytes. J Physiol 539:133–143. https://doi.org/10.1113/jphysiol.2001.012940 CrossRefGoogle Scholar
- Dormandy J, Charbonnel B, Eckland D, Erdmann E, Massi-Benedetti M, Moules IK et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the proactive study (prospective pioglitazone clinical trial in macrovascular events): a randomised controlled trial. Lancet 366:1279–1289. https://doi.org/10.1016/S0140-6736(05)67528-9 CrossRefGoogle Scholar
- Dutta K, Podolin DA, Davidson MB, Davidoff AJ (2001) Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Diabetes 50:1186–1192. https://doi.org/10.2337/diabetes.50.5.1186 CrossRefGoogle Scholar
- Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, Montori VM (2007) Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol 49:403–414. https://doi.org/10.1016/j.jacc.2006.09.032 CrossRefGoogle Scholar
- Girman CJ, Rhodes T, Mercuri M, Pyorala K, Kjekshus J, Pedersen TR et al (2004) The metabolic syndrome and risk of major coronary events in the Scandinavian simvastatin survival study (4S) and the air force/Texas coronary atherosclerosis prevention study (AFCAPS/TexCAPS). Am J Cardiol 93:136–141. https://doi.org/10.1016/j.amjcard.2003.09.028 CrossRefGoogle Scholar
- Hansen PS, Clarke RJ, Buhagiar KA, Hamilton E, Garcia A, White C, Rasmussen HH (2007) Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes. Am J Physiol Cell Physiol 292:C1070–C1077. https://doi.org/10.1152/ajpcell.00288.2006 CrossRefGoogle Scholar
- Hattori Y, Matsuda N, Kimura J, Ishitani T, Tamada A, Gando S, Kemmotsu O, Kanno M (2000) Diminished function and expression of the cardiac Na+-Ca2+ exchanger in diabetic rats: implication in Ca2+ overload. J Physiol 527:85–94. https://doi.org/10.1111/j.1469-7793.2000.00085.x CrossRefGoogle Scholar
- Howarth FC, Qureshi A, Adeghate E (2004) Contraction and intracellular free Ca2+ concentrations in ventricular myocytes from rats receiving sucrose-enriched diets. Int J Diabetes Metab 12:5–9 https://www.researchgate.net/publication/237383013 Google Scholar
- Hsieh SD, Muto T, Tsuji H, Arase Y, Murase T (2010) Clustering of other metabolic risk factors in subjects with metabolic syndrome. Metabolism 59:697–702. https://doi.org/10.1016/j.metabol.2009.08.026 CrossRefGoogle Scholar
- Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288:2709–2716. https://doi.org/10.1001/jama.288.21.2709 CrossRefGoogle Scholar
- Lambert R, Srodulski S, Peng X, Margulies KB, Despa F, Despa S (2015) Intracellular Na+ concentration ([Na+]i) is elevated in diabetic hearts due to enhanced Na+–glucose cotransport. Am Heart Assoc 4:e002183. https://doi.org/10.1161/JAHA.115.002183 Google Scholar
- Louch WE, Hougen K, Mørk HK, Swift F, Aronsen JM, Sjaastad I, Reims HM, Roald B, Andersson KB, Christensen G, Sejersted OM (2010) Sodium accumulation promotes diastolic dysfunction in end-stage heart failure following Serca2 knockout. J Physiol 588:465–478. https://doi.org/10.1113/jphysiol.2009.183517 CrossRefGoogle Scholar
- Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kihida K (2001) PPAR-gamma ligands increase expression and plasma concentrations of adiponectin, an adipocyte-derived protein. Diabetes 50:2094–2099. https://doi.org/10.2337/diabetes.50.9.2094 CrossRefGoogle Scholar
- Nagai Y, Ichihara A, Nakano D, Kimura S, Pelisch N, Fujisawa Y, Hitomi H, Hosomi N, Kiyomoto H, Kohno M, Ito H, Nishiyama A (2009) Possible contribution of the non-proteolytic activation of prorenin to the development of insulin resistance in fructose-fed rats. Exp Physiol 94:1016–1023. https://doi.org/10.1113/expphysiol.2009.048108 CrossRefGoogle Scholar
- Okatan EN, Durak AT, Turan B (2016) Electrophysiological basis of metabolic-syndrome-induced cardiac dysfunction. Can J Physiol Pharmacol 94(10):1064–1073. https://doi.org/10.1139/cjpp-2015-0531 CrossRefGoogle Scholar
- Panchal SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V et al (2011) High-carbohydrate high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 57:51–64. https://doi.org/10.1097/FJC.0b013e31821b1379 CrossRefGoogle Scholar
- Pieske B, Maier LS, Piacentino V III, Weisser J, Hasenfuss G, Houser S (2002) Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation 106:447–453. https://doi.org/10.1161/01.CIR.0000023042.50192.F4 CrossRefGoogle Scholar
- Reaven G (2002) Metabolic syndrome pathophysiology and implications for management of cardiovascular disease. Circulation 106:286–288. https://doi.org/10.1161/01.CIR.0000019884.36724.D9 CrossRefGoogle Scholar
- Ronchi C, Torre E, Rizzetto R, Bernardi J, Rocchetti M, Zaza A (2017) Late sodium current and intracellular ionic homeostasis in acute ischemia. Basic Res Cardiol 112:12. https://doi.org/10.1007/s00395-017-0602-9 CrossRefGoogle Scholar
- Ruiz-Ramirez A, Chavez-Salgado M, Peneda-Flores JA, Zapata E, Masso F, El-Hafidi M (2011) High-sucrose diet increases ROS generation, FFA accumulation, UCP2 level, and proton leak in liver mitochondria. Am J Physiol Endocrinol Metab 301:E1198–E1207. https://doi.org/10.1152/ajpendo.00631.2010 CrossRefGoogle Scholar
- Scamps F, Vassort G (1994) Effect of extracellular ATP on the Na+ current in rat ventricular myocytes. Circ Res 74:710–717. https://doi.org/10.1161/01.RES.74.4.710 CrossRefGoogle Scholar
- Schaffer SW, Ballard-Croft C, Boerth S, Allo SN (1997) Mechanisms underlying depressed Na+/Ca2+ exchanger activity in the diabetic heart. Cardiovasc Res 34:129–136. https://doi.org/10.1016/s0008-6363(97)00020-5
- Soria A, D’Alessandro ME, Lombardo YB (2001) Duration of feeding on a sucrose-rich diet determines metabolic and morphological changes in rat adipocytes. J Appl Physiol 91:2109–2116. https://doi.org/10.1152/jappl.2001.91.5.2109 CrossRefGoogle Scholar
- Sugishita K, Su Z, Li F, Philipson KD, Barry WH (2001) Gender influences [Ca2+]i during metabolic inhibition in myocytes overexpressing the Na+-Ca2+ exchanger. Circulation 104:2101–2106. https://doi.org/10.1161/hc4001.097038 CrossRefGoogle Scholar
- Van Emous JG, Nederhoff MGJ, Ruigrok TJC, Van Echteld CJA (1997) The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: consequences for post-ischemic recovery. J Mo Cell Cardiol 29:85–96. https://doi.org/10.1006/jmcc.1996.0254 CrossRefGoogle Scholar
- Vasanji Z, Cantor EJ, Juric D, Moyen M, Netticadan T (2006) Alterations in cardiac contractile performance and sarcoplasmic reticulum function in sucrose-fed rats is associated with insulin resistance. Am J Physiol Cell Physiol 291:C772–C780. https://doi.org/10.1152/ajpcell.00086.2005 CrossRefGoogle Scholar
- Weber CR, Piacentino V 3rd, Houser SR, Bers DM (2003) Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation 108:2224–2229. https://doi.org/10.1161/01.CIR.0000095274.72486.94
- Winer N, Sowers JR (2004) Epidemiology of diabetes. J Clin Pharmacol 44:397–405. https://doi.org/10.1177/0091270004263017 CrossRefGoogle Scholar
- Wold LE, Dutta K, Mason MM, Ren J, Cala SE, Schwanke ML et al (2005) Impaired SERCA function contributes to cardiomyocytes dysfunction in insulin resistant rats. J Mol Cell Cardiol 39:297–307. https://doi.org/10.1016/j.yjmcc.2005.03.014 CrossRefGoogle Scholar
- Yki-Järvinen H (2004) Drug therapy: thiazolidinediones. N Engl J Med 351:1106–1118. https://doi.org/10.1056/NEJMra041001. CrossRefGoogle Scholar