Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 49, Issue 3, pp 231–239 | Cite as

Liver mitochondrial membrane fluidity at early development of diabetes and its correlation with the respiration

  • Ismael H. Pérez-Hernández
  • Josué Misael Domínguez-Fuentes
  • Martín Palomar-Morales
  • Ana Cecilia Zazueta-Mendizabal
  • Arturo Baiza-Gutman
  • Ricardo Mejía-ZepedaEmail author
Article
  • 385 Downloads

Abstract

The biological membranes are important in cell function but, during development of diseases such as diabetes, they are impaired. Consequently, membrane-associated biological processes are impaired as well. The mitochondria are important organelles where oxidative phosphorylation takes place, a process closely related with the membranes. In general, it is accepted that the development process of diabetes decreases membrane fluidity. However, in some cases, it has been found to increase membrane fluidity of mitochondria but to decrease the Respiratory Control (RC) index. In this study we found an increase of membrane fluidity and an increase of the RC at an early phase of the development of a type 2 diabetes model. We measured the lipoperoxidation, analyzed the fatty acids composition by gas chromatography, and assessed membrane fluidity using three fluorescent monitors located at different depths inside the bilayer, dipyrenilpropane (DPyP), diphenylhexatriene (DPH), and trimethylammonium diphenylhexatriene (TMA-DPH). Our findings indicate that in the initial stage of diabetes development, when lipoperoxidation still is not significant, the membrane fluidity of liver mitochondria increases because of the increment in the unsaturated to saturated fatty acids ratio (U/S), thus producing an increase of the RC. The membrane fluidity is not the same at all depths in the bilayer. Contrary to the results obtained in mitochondria, the diabetes induced a decrease in the U/S fatty acids ratio of liver total lipids, indicating that the mitochondria might have an independent mechanism for regulating its fatty acids composition.

Keywords

Diabetes Mitochondria Membrane fluidity Fatty acids composition Respiratory control Liver 

Notes

Acknowledgements

We thank the financial support for this project from Programa de Apoyo a Proyectos de Investigación a Innovación Tecnológica PAPIIT IN-216314 to RMZ- Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México (DGAPA-UNAM). We also thank to the Posgrado en Ciencias Biológicas-UNAM and the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the fellowship 233851 to IHPH.

Compliance with ethical standards

Competing interests

The authors have declared that no competing interests exist.

References

  1. Almeida LM, Vaz WL, Zachariasse KA, Madeira VM (1982) Fluidity of sarcoplasmic reticulum membranes investigated with dipyrenylpropane, an intramolecular excimer probe. Biochemistry 21:5972–5977CrossRefGoogle Scholar
  2. Ames GF (1968) Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol 95:833–843PubMedPubMedCentralGoogle Scholar
  3. Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Costa J, Borges M, David C, Vaz Carneiro A (2006) Efficacy of lipid lowering drug treatment for diabetic and non-diabetic patients: meta-analysis of randomized controlled trials. BMJ 332(7550):1115–1124. doi: 10.1136/bmj.38793.468449.AE CrossRefPubMedPubMedCentralGoogle Scholar
  6. Damasceno DC, Sinzato YK, Bueno A, Netto AO, Dallaqua B, Gallego FQ, Iessi IL, Corvino SB, Serrano RG, Marini G, Piculo F, Calderon IMP, Rudge F (2013) Mild diabetes models and their maternal-fetal repercussions 2013:473575. doi: 10.1155/2013/473575 CrossRefGoogle Scholar
  7. Dey A, Swaminathan K (2010) Hyperglycemia-induced mitochondrial alterations in liver. Life Sci 87(7–8):197–214. doi: 10.1016/j.lfs.2010.06.007 CrossRefPubMedGoogle Scholar
  8. Fagone P, Jackowski S (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res 50(Suppl):S311–S316. doi: 10.1194/jlr.R800049-JLR200 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Figueroa-García MC, Espinosa-García MT, Martínez-Montes F, Palomar-Morales M, Mejía-Zepeda R (2015) Even a chronic mild hyperglycemia affects membrane fluidity and lipoperoxidation in placental mitocondria in Wistar rats. PLoS One 10(12):1–15. doi: 10.1371/journal.pone.0143778 CrossRefGoogle Scholar
  10. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedPubMedCentralGoogle Scholar
  11. Hall ED, Wang JA, Bosken JM, Singh IN (2016) Lipid peroxidation in brain or spinal cord mitochondria after injury. J Bioenerg Biomembr 48(2):169–174. doi: 10.1007/s10863-015-9600-5 CrossRefPubMedPubMedCentralGoogle Scholar
  12. IDF Diabetes Atlas (2015) International Diabetes Federation, 7th ednGoogle Scholar
  13. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124. doi: 10.1038/nrm2330 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mejia EM, Hatch GM (2016) Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr 48(2):99–112. doi: 10.1007/s10863-015-9601-4 CrossRefPubMedGoogle Scholar
  15. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608PubMedGoogle Scholar
  16. Nanetti L, Vignini A, Raffaelli F, Moroni C, Silvestrini M, Provinciali L, Mazanti L (2008) Platelet membrane fluidity and Na+/K+ ATPase activity in acute stroke. Brain Res 1205:21–26. doi: 10.1016/j.brainres.2008.02.005 CrossRefPubMedGoogle Scholar
  17. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  18. Patil MA, Suryanarayana P, Putcha UK, Srinivas M, Reddy GB (2014) Evaluation of neonatal streptozotocin induced diabetic rat model for the development of cataract. Oxidative Med Cell Longev 2014:463264. doi: 10.1155/2014/463264 CrossRefGoogle Scholar
  19. Patwardham GA, Beverly LJ, Siskind LJ (2016) Sphingolipids and mitochondrial apoptosis. J Bioenerg Biomembr 48(2):153–168. doi: 10.1007/s10863-015-9602-3 CrossRefGoogle Scholar
  20. Pérez-Hernández IH, Avendaño-Flores YS, Mejía-Zepeda R (2010) Analysis of the membrane fluidity of erythrocyte ghosts in diabetic, spontaneously hypertensive rats. Acta Diabetol 47(Suppl 1):S47–S55. doi: 10.1007/s00592-009-0120-9 CrossRefGoogle Scholar
  21. Pilon M (2016) Revisiting the membrane-centric view of diabetes. Lipids Health Dis 15(1):167. doi: 10.1186/s12944-016-0342-0 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Portha B, Picon L, Rosselin G (1979) Chemical diabetes in the adult rat as the spontaneous evolution of neonatal diabetes. Diabetologia 17:371–377CrossRefGoogle Scholar
  23. Raza H, Prabu SK, John A, Avadhani NG (2011) Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. Int J Mol Sci 12(5):3133–3147. doi: 10.3390/ijms12053133 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Robertson RP, Harmon JS (2006) Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet β cell. Free Radic Biol Med 41(2):177–184. doi: 10.1016/j.freeradbiomed.2005.04.030 CrossRefPubMedGoogle Scholar
  25. Rolo AP, Palmeira CM (2006) Diabetes and mitocondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178. doi: 10.1016/j.taap.2006.01.003 CrossRefPubMedGoogle Scholar
  26. Rossy J, Ma Y, Gaus K (2014) The organisation of the cell membrane: do proteins rule lipids? Curr Opin Chem Biol 20:54–59. doi: 10.1016/jcbpa.2014.04.009 CrossRefPubMedGoogle Scholar
  27. Santos DL, Palmeira CM, Seiça R, Dias J, Mesquita J, Moreno AJ, Santos MS (2003) Diabetes and mitocondrial oxidative stress: a study using heart mitochondria from the diabetic Goto-Kakizaki rat. Mol Cell Biochem 246(1–2):163–170CrossRefGoogle Scholar
  28. Shivaji S, Prakash JSS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95. doi: 10.1007/s00203-009-0539-y CrossRefPubMedGoogle Scholar
  29. Vergeade A, Bertram CC, Bikineyeva AT, Zackert WE, Zinkel SS, May JM, Dikalov SI, Roberts LJ, Boutaud O (2016) Cardiolipin fatty acid remodeling regulates mitochondrial function by modifying the electron entry point in the respiratory chain. Mitochondrion 28:88–95. doi: 10.1016/j.mito.2016.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Waczulikova I, Habodaszova D, Cagalinec M, Ferko M, Ulicna O, Mateasik A, Sikurova L, Ziegelhöffer A (2007) Mitochondrial membrane fluidity, potential, and calcium transients in the myocardium from acute diabetic rats. Can J Physiol Pharmacol 85:372–381. doi: 10.1139/Y07-035 CrossRefPubMedGoogle Scholar
  31. Wang RN, Bouwens L, Klöppel G (1994) Beta-cell proliferation in normal and streptozotocin-treated newborn rats: site, dynamics and capacity. Diabetologia 37:1088–1096CrossRefGoogle Scholar
  32. Weijers RNM (2012) Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev 8:390–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ismael H. Pérez-Hernández
    • 1
  • Josué Misael Domínguez-Fuentes
    • 1
  • Martín Palomar-Morales
    • 2
  • Ana Cecilia Zazueta-Mendizabal
    • 3
  • Arturo Baiza-Gutman
    • 2
  • Ricardo Mejía-Zepeda
    • 1
    Email author
  1. 1.Unidad de BiomedicinaFES Iztacala, UNAMTlalnepantlaMexico
  2. 2.Unidad de MorfofisiologíaFES Iztacala, UNAMTlalnepantlaMexico
  3. 3.Depto. Biomedicina CardiovascularInstituto Nacional de Cardiología I.ChCiudad de MéxicoMexico

Personalised recommendations