Advertisement

MAS dependent sensitivity of different isotopomers in selectively methyl protonated protein samples in solid state NMR

  • Kai Xue
  • Riddhiman SarkarEmail author
  • Zdenek Tosner
  • Daniela Lalli
  • Carina Motz
  • Benita Koch
  • Guido Pintacuda
  • Bernd ReifEmail author
Article
  • 80 Downloads

Abstract

Sensitivity and resolution together determine the quality of NMR spectra in biological solids. For high-resolution structure determination with solid-state NMR, proton-detection emerged as an attractive strategy in the last few years. Recent progress in probe technology has extended the range of available MAS frequencies up to above 100 kHz, enabling the detection of resolved resonances from sidechain protons, which are important reporters of structure. Here we characterise the interplay between MAS frequency in the newly available range of 70–110 kHz and proton content on the spectral quality obtainable on a 1 GHz spectrometer for methyl resonances. Variable degrees of proton densities are tested on microcrystalline samples of the α-spectrin SH3 domain with selectively protonated methyl isotopomers (CH3, CH2D, CHD2) in a perdeuterated matrix. The experimental results are supported by simulations that allow the prediction of the sensitivity outside this experimental frequency window. Our results facilitate the selection of the appropriate labelling scheme at a given MAS rotation frequency.

Keywords

Solid state NMR Magic angle spinning (MAS) Selective deuteration CH3 labelling Methyl isotopomers Microcrystalline proteins 

Notes

Acknowledgements

This work was performed in the framework of the SFB-1035 (Project B07; German Research Foundation, DFG). We acknowledge support from the Helmholtz-Gemeinschaft, the Deutsche Forschungsgemeinschaft (DFG, Grant Re1435), the Center for Integrated Protein Science Munich (CIPS-M), the CNRS (IR-RMN FR3050), the European Research Council (ERC) (ERC-2014-CoG “P-MEM-NMR” GA n 648974) and by the EU access project iNext (GA 653706).

Supplementary material

10858_2019_274_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1075 kb)

References

  1. Agarwal V, Xue Y, Reif B, Skrynnikov NR (2008) Protein side-chain dynamics as observed by solution- and solid-state NMR: a similarity revealed. J Am Chem Soc 130:16611–16621CrossRefGoogle Scholar
  2. Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Bockmann A, Meier BH (2014) De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed 53:12253–12256CrossRefGoogle Scholar
  3. Andreas LB, Jaudzems K, Stanek J, Lalli D, Bertarello A, Marchand TL, Cala-De Paepe D, Kotelovica S, Akopjana I, Knott B, Wegner S, Engelke F, Lesage A, Emsley L, Tars K, Herrmann T, Pintacuda G (2016) Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci USA 113:9187–9192CrossRefGoogle Scholar
  4. Asami S, Reif B (2012) Assignment strategies for aliphatic protons in the solid-state in randomly protonated proteins. J Biomol NMR 52:31–39CrossRefGoogle Scholar
  5. Asami S, Reif B (2013) Proton-detected solid-state NMR spectroscopy at aliphatic sites: application to crystalline systems. Acc Chem Res 46:2089–2097CrossRefGoogle Scholar
  6. Asami S, Schmieder P, Reif B (2010) High resolution 1H-detected solid-state NMR spectroscopy of protein aliphatic resonances: access to tertiary structure information. J Am Chem Soc 132:15133–15135CrossRefGoogle Scholar
  7. Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330ADSCrossRefGoogle Scholar
  8. Barbet-Massin E, Pell AJ, Retel JS, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman V, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497CrossRefGoogle Scholar
  9. Barbet-Massin E, Huang C-T, Daebel V, Hsu S-TD, Reif B (2015) Site-specific solid-state NMR studies of “Trigger Factor” in complex with the large ribosomal subunit 50S. Angew Chem Int Ed 54:4367–4369CrossRefGoogle Scholar
  10. Barbet-Massin E, van der Sluis E, Musial J, Beckmann R, Reif B (2018) Reconstitution of isotopically labeled ribosomal protein L29 in the 50S large ribosomal subunit for solution-state and solid-state NMR. Protein Complex Assem 1764:87–100CrossRefGoogle Scholar
  11. Bockmann A, Ernst M, Meier BH (2015) Spinning proteins, the faster, the better? J Magn Reson 253:71–79ADSCrossRefGoogle Scholar
  12. Bodenhausen G, Ruben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189ADSCrossRefGoogle Scholar
  13. Cala-De Paepe D, Stanek J, Jaudzems K, Tars K, Andreas LB, Pintacuda G (2017) Is protein deuteration beneficial for proton detected solid-state NMR at and above 100 kHz magic-angle spinning? Solid State Nucl Magn Reson 87:126–136CrossRefGoogle Scholar
  14. Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881CrossRefGoogle Scholar
  15. Chevelkov V, Faelber K, Schrey A, Rehbein K, Diehl A, Reif B (2007) Differential line broadening in MAS solid-state NMR due to dynamic interference. J Am Chem Soc 129:10195–10200CrossRefGoogle Scholar
  16. Ishii Y, Yesinowski JP, Tycko R (2001) Sensitivity enhancement in solid-state 13C NMR of synthetic polymers and biopolymers by 1H NMR detection with high-speed magic angle spinning. J Am Chem Soc 123:2921–2922CrossRefGoogle Scholar
  17. Knight MJ, Webber AL, Pell AJ, Guerry P, Barbet-Massin E, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Emsley L, Lesage A, Herrmann T, Pintacuda G (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew Chem Int Ed 50:11697–11701CrossRefGoogle Scholar
  18. Kurauskas V, Crublet E, Macek P, Kerfah R, Gauto DF, Boisbouvier J, Schanda P (2016) Sensitive proton-detected solid-state NMR spectroscopy of large proteins with selective CH3 labelling: application to the 50S ribosome subunit. Chem Commun 52:9558–9561CrossRefGoogle Scholar
  19. Lewandowski JR, Dumez JN, Akbey U, Lange S, Emsley L, Oschkinat H (2011) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211CrossRefGoogle Scholar
  20. Linser R, Chevelkov V, Diehl A, Reif B (2007) Sensitivity enhancement using paramagnetic relaxation in MAS solid state NMR of perdeuterated proteins. J Magn Reson 189:209–216ADSCrossRefGoogle Scholar
  21. Mance D, Sinnige T, Kaplan M, Narasimhan S, Daniëls M, Houben K, Baldus M, Weingarth M (2015) An efficient labelling approach to harness backbone and side-chain protons in 1H-detected solid-state NMR spectroscopy. Angew Chem Int Ed 54:15799–15803CrossRefGoogle Scholar
  22. Maricq MM, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300–3316ADSCrossRefGoogle Scholar
  23. Maudsley AA, Müller L, Ernst RR (1977) Cross-correlation of spin-decoupled NMR spectra by heteronuclear two-dimensional spectroscopy. J Magn Reson 28:463–469ADSGoogle Scholar
  24. McDermott AE, Creuzet FJ, Kolbert AC, Griffin RG (1992) High-resolution magic-angle-spinning NMR spectra of protons in deuterated solids. J Magn Reson 98:408–413ADSGoogle Scholar
  25. Nieuwkoop AJ, Franks WT, Rehbein K, Diehl A, Akbey Ü, Engelke F, Emsley L, Pintacuda G, Oschkinat H (2015) Sensitivity and resolution of proton detected spectra of a deuterated protein at 40 and 60 kHz magic-angle-spinning. J Biomol NMR 61:161–171CrossRefGoogle Scholar
  26. Penzel S, Smith AA, Agarwal V, Hunkeler A, Org ML, Samoson A, Bockmann A, Ernst M, Meier BH (2015) Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods. J Biomol NMR 63:165–186CrossRefGoogle Scholar
  27. Penzel S, Oss A, Org M-L, Samoson A, Böckmann A, Ernst M, Meier BH (2019) Spinning faster: protein NMR at MAS frequencies up to 126 kHz. J Biomol NMR 73:19–29CrossRefGoogle Scholar
  28. Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590ADSCrossRefGoogle Scholar
  29. Reif B (2012) Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: implications for structure and dynamics. J Magn Reson 216:1–12ADSCrossRefGoogle Scholar
  30. Reif B, Jaroniec CP, Rienstra CM, Hohwy M, Griffin RG (2001) 1H–1H MAS correlation spectroscopy and distance measurements in a deuterated peptide. J Magn Reson 151:320–327ADSCrossRefGoogle Scholar
  31. Saalwächter K (2005) Sensitivity enhancement by inverse detection in solids. NMR spectroscopy of biological solids. Taylor and Francis Group, New York, pp 151–175Google Scholar
  32. Samoson A, Tuherm T, Past J, Reinhold A, Anupold T, Heinmaa I (2005) New horizons for magic-angle spinning NMR. Top Curr Chem 246:15–31CrossRefGoogle Scholar
  33. Schubeis T, Le Marchand T, Andreas LB, Pintacuda G (2018) 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins. J Magn Reson 287:140–152ADSCrossRefGoogle Scholar
  34. Sprangers R, Kay LE (2007) Probing supramolecular structure from measurement of methyl (1)H-(13)C residual dipolar couplings. J Am Chem Soc 129:12668–12669CrossRefGoogle Scholar
  35. Sprangers R, Velyvis A, Kay LE (2007) Solution NMR of supramolecular complexes: providing new insights into function. Nat Methods 4:697–703CrossRefGoogle Scholar
  36. Stanek J, Andreas LB, Jaudzems K, Cala D, Lalli D, Bertarello A, Schubeis T, Akopjana I, Kotelovica S, Tars K, Pica A, Leone S, Picone D, Xu ZQ, Dixon NE, Martinez D, Berbon M, El Mammeri N, Noubhani A, Saupe S, Habenstein B, Loquet A, Pintacuda G (2016) NMR spectroscopic assignment of backbone and side-chain protons in fully protonated proteins: microcrystals, sedimented assemblies, and amyloid fibrils. Angew Chem Int Ed Engl 55:15503–15509Google Scholar
  37. Stock A, Stöppler D, Macpherson A, Smith-Penzel S, Basse N, Lecomte F, Deboves H, Taylor RD, Norman T, Porter J, Waters LC, Westwood M, Cossins B, Cain K, White J, Griffin R, Prosser C, Kelm S, Sullivan AH, Fox D, Carr MD, Henry A, Taylor R, Meier BH, Oschkinat H, Lawson AD (2018) Insight into small molecule binding to the neonatal Fc receptor by X-ray crystallography and 100 kHz magic-angle-spinning NMR. PLoS Biol 16:e2006192CrossRefGoogle Scholar
  38. Tošner Z, Andersen R, Stevensson B, Edén M, Nielsen NC, Vosegaard T (2014) Computer-intensive simulation of solid-state NMR experiments using SIMPSON. J Magn Reson 246:79–93ADSCrossRefGoogle Scholar
  39. Vasa SK, Singh H, Grohe K, Linser R (2019) Assessment of a large enzyme-drug complex by proton-detected solid-state NMR spectroscopy without deuteration. Angew Chem Int Ed 58:5758–5762CrossRefGoogle Scholar
  40. Xue K, Sarkar R, Motz C, Asami S, Camargo DCR, Decker V, Wegner S, Tosner Z, Reif B (2017) Limits of resolution and sensitivity of proton detected MAS solid-state NMR experiments at 111 kHz in deuterated and protonated proteins. Sci Rep 7:7444ADSCrossRefGoogle Scholar
  41. Xue K, Sarkar R, Motz C, Asami S, Decker V, Wegner S, Tosner Z, Reif B (2018) Magic-angle spinning frequencies beyond 300 kHz are necessary to yield maximum sensitivity in selectively methyl protonated protein samples in solid-state NMR. J Phys Chem C 122:16437–16442CrossRefGoogle Scholar
  42. Zorin VE, Brown SP, Hodgkinson P (2006) Origins of linewidth in 1H magic-angle spinning NMR. J Chem Phys 125:144508ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und UmweltNeuherbergGermany
  2. 2.Munich Center for Integrated Protein Science (CIPS-M) at Department ChemieTechnische Universität München (TUM)GarchingGermany
  3. 3.Department of Chemistry, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  4. 4.Centre de Résonance Magnétique Nucléaire a Très hauts Champs (FRE 2034, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1)Université de LyonVilleurbanneFrance
  5. 5.Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale Amedeo AvogadroAlessandriaItaly

Personalised recommendations