Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adult stem cell response to doped bioactive borate glass

  • 91 Accesses


Bioactive glasses have transformed healthcare due to their versatility. Bioactive borate glass, in particular, has shown remarkable healing properties for both hard and soft tissues. Incorporating dopants into the composition of bioactive glass helps to control mechanical properties, and it increases their usefulness for clinical applications. Using a bioactive borate glass, 13-93B3 (B3), we investigated eleven dopants on the viability and migration potential of adipose stem cells (ASCs), a therapeutic source of cells used in tissue engineering and cell therapy. Our results show that under standard cell culture conditions, only Cu-doped B3 decreased cell viability, while only Y-doped B3 attracted ASCs as it dissolved in cell culture media. Using a transwell invasion assay, priming ASCs with Co, Fe, Ga, I, Sr, or Zn-doped B3 increased their homing capacity. Because there is widespread interest in optimizing and enhancing the homing efficiency of ASCs and other therapeutic cells, we then tested if priming bone marrow mesenchymal stem cells (BMSCs) with dopants also increased their homing capacity. In the case of BMSCs, there was a significant increase in invasion when cells were primed with any of the doped-B3 glasses. This work shows that incorporating dopants into borate glasses can provide a platform for a safe and efficient method that stimulates endogenous cells and healing mechanisms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Nandi SK, Mahato A, Kundu B, Mukherjee P. Doped bioactive glass materials in bone regeneration. Adv Tech Bone Regener. 2016. https://doi.org/10.5772/63266.

  2. 2.

    Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A. 2014;102:254–74. https://doi.org/10.1002/jbm.a.34690.

  3. 3.

    Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74. https://doi.org/10.1016/j.biomaterials.2011.01.004.

  4. 4.

    Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73. https://doi.org/10.1016/j.actbio.2011.03.016.

  5. 5.

    Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M. Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol. 2018;36:430–44. https://doi.org/10.1016/j.tibtech.2017.12.003.

  6. 6.

    Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going? J Funct Biomater. 2018;9. https://doi.org/10.3390/jfb9010025.

  7. 7.

    Gupta B, Papke JB, Mohammadkhah A, Day DE, Harkins AB. Effects of chemically doped bioactive borate glass on neuron regrowth and regeneration. Ann Biomed Eng. 2016;44:3468–77. https://doi.org/10.1007/s10439-016-1689-0.

  8. 8.

    Jung SB. Borate based bioactive glass scaffolds for hard and soft tissue engineering. Ph.D. dissertation, Missouri University of Science and Technology; Rolla, MO, 2010.

  9. 9.

    Hoppe A, Boccaccini AR. Chapter 16: Bioactive glasses as carriers of therapeutic ions and the biological implications. In: Bioactive glasses: Fundamentals, Technology and Applications. Royal Society of Chemistry Publishing, 2016. p. 362–92.

  10. 10.

    Gupta N, Santhiya D, Murugavel S, Kumar A, Aditya A, Ganguli M, et al. Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass. Coll Surf A. 2018;538:393–403. https://doi.org/10.1016/j.colsurfa.2017.11.023.

  11. 11.

    Strong AL, Bowles AC, MacCrimmon CP, Frazier TP, Lee SJ, Wu X, et al. Adipose stromal cells repair pressure ulcers in both young and elderly mice: potential role of adipogenesis in skin repair. Stem Cells Transl Med. 2015;4:632–42. https://doi.org/10.5966/sctm.2014-0235.

  12. 12.

    Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 2014;22:313–25. https://doi.org/10.1111/wrr.12173.

  13. 13.

    Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther. 2015;15:1285–92. https://doi.org/10.1517/14712598.2015.1053867.

  14. 14.

    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95. https://doi.org/10.1091/mbc.e02-02-0105.

  15. 15.

    Casteilla L, Dani C. Adipose tissue-derived cells: from physiology to regenerative medicine. Diabetes Metab. 2006;32:393–401.

  16. 16.

    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301. https://doi.org/10.1634/stemcells.2005-0342.

  17. 17.

    Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33:1402–16. https://doi.org/10.1016/j.exphem.2005.07.003.

  18. 18.

    Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheumatol. 2005;52:2521–9. https://doi.org/10.1002/art.21212.

  19. 19.

    Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212:702–9. https://doi.org/10.1002/jcp.21068.

  20. 20.

    Pizzorno L. Nothing boring about boron. Integr Med. 2015;14:35–48.

  21. 21.

    Tepedelen BE, Soya E, Korkmaz M. Boric acid reduces the formation of DNA double strand breaks and accelerates wound healing process. Biol Trace Elem Res. 2016;174:309–18. https://doi.org/10.1007/s12011-016-0729-9.

  22. 22.

    Nzietchueng RM, Dousset B, Franck P, Benderdour M, Nabet P, Hess K. Mechanisms implicated in the effects of boron on wound healing. J Trace Elem Med Biol. 2002;16:239–44. https://doi.org/10.1016/S0946-672X(02)80051-7.

  23. 23.

    Nielsen FH. Update on human health effects of boron. J Trace Elem Med Biol. 2014;28:383–7. https://doi.org/10.1016/j.jtemb.2014.06.023.

  24. 24.

    Khaliq H, Juming Z, Ke-Mei P. The physiological role of boron on health. Biol Trace Elem Res. 2018;186:31–51. https://doi.org/10.1007/s12011-018-1284-3.

  25. 25.

    Abdelnour SA, Abd El-Hack ME, Swelum AA, Perillo A, Lasocco C. The vital roles of boron in animal health and production: a comprehensive review. J Trace Elem Med Biol. 2018;50:296–304. https://doi.org/10.1016/j.jtemb.2018.07.018.

  26. 26.

    Nielsen FH. Should bioactive trace elements not recognized as essential, but with beneficial health effects, have intake recommendations. J Trace Elem Med Biol. 2014;28:406–8. https://doi.org/10.1016/j.jtemb.2014.06.019.

  27. 27.

    Dermience M, Lognay G, Mathieu F, Goyens P. Effects of thirty elements on bone metabolism. J Trace Elem Med Biol. 2015;32:86–106. https://doi.org/10.1016/j.jtemb.2015.06.005.

  28. 28.

    Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Trace element doping in calcium phosphate ceramics to understand osteogenesis and angiogenesis. Trends Biotechnol. 2013:31. https://doi.org/10.1016/j.tibtech.2013.06.005.

  29. 29.

    Siddiqui K, Bawazeer N, Joy SS. Variation in macro and trace elements in progression of type 2 diabetes. Sci World J. 2014;2014:461591. https://doi.org/10.1155/2014/461591.

  30. 30.

    Fraga CG. Relevance, essentiality and toxicity of trace elements in human health. Mol Asp Med. 2005;26:235–44. https://doi.org/10.1016/j.mam.2005.07.013.

  31. 31.

    Liu R, Memarzadeh K, Chang B, Zhang Y, Ma Z, Allaker RP, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6:29985. https://doi.org/10.1038/srep29985.

  32. 32.

    Saghiri MA, Asatourian A, Orangi J, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis-Part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol Hematol. 2015;96:143–55. https://doi.org/10.1016/j.critrevonc.2015.05.011.

  33. 33.

    Rath SN, Brandl A, Hiller D, Hoppe A, Gbureck U, Horch RE, et al. Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS ONE. 2014;9:e113319. https://doi.org/10.1371/journal.pone.0113319.

  34. 34.

    Aaseth J, Boivin G, Andersen O. Osteoporosis and trace elements–an overview. J Trace Elem Med Biol. 2012;26:149–52. https://doi.org/10.1016/j.jtemb.2012.03.017.

  35. 35.

    Młyniec K, Davies CL, de Agüero Sánchez IG, Pytka K, Budziszewska B, Nowak G. Essential elements in depression and anxiety. Part I. Pharmacol Rep. 2014;66:534–44. https://doi.org/10.1016/j.pharep.2014.03.001.

  36. 36.

    Saghiri MA, Asatourian A, Orangi J, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis–Part I: N, Fe, Se, P, Au, and Ca. Crit Rev Oncol Hematol. 2015;96:129–42. https://doi.org/10.1016/j.critrevonc.2015.05.010.

  37. 37.

    Chitambar CR. Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health. 2010;7:2337–61. https://doi.org/10.3390/ijerph7052337.

  38. 38.

    Song D, Li Y, Cao J, Han Z, Gau L, Xu Z, et al. Effect of iron deficiency on c-kit+ cardiac stem cells in vitro. PLoS ONE. 2013;8:e65721. https://doi.org/10.1371/journal.pone.0065721.

  39. 39.

    Nielsen FH. Update on the possible nutritional importance of silicon. J Trace Elem Med Biol. 2014;28:379–82. https://doi.org/10.1016/j.jtemb.2014.06.024.

  40. 40.

    Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 2011;29:981–91. https://doi.org/10.1002/stem.646.

  41. 41.

    Hosseini A, Sharifi AM, Abdollahi M, Najafi R, Baeeri M, Rayegan S, et al. Cerium and yttrium oxide nanoparticles against lead-induced oxidative stress and apoptosis in rat hippocampus. Biol Trace Elem Res. 2015;164:80–9. https://doi.org/10.1007/s12011-014-0197-z.

  42. 42.

    Ghaznavi H, Najafi R, Mehrzadi S, Hosseini A, Tekyemaroof N, Shakeri-Zaedeh A, et al. Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurol Res. 2015;37:624–32. https://doi.org/10.1179/1743132815Y.0000000037.

  43. 43.

    Zhang J, Liu C, Li Y, Sun J, Wang P, Di K, et al. Effect of yttrium ion on the proliferation, differentiation and mineralization function of primary mouse osteoblasts in vitro. J Rare Earths. 2010;28:466–70. https://doi.org/10.1016/S1002-0721(09)60135-6.

  44. 44.

    Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol. 2012;86:521–34. https://doi.org/10.1007/s00204-011-0775-1.

  45. 45.

    Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschlager M, Dolznig H. In vitro cell migration and invasion assays. Mutat Res. 2013;752:10–24. https://doi.org/10.1016/j.mrrev.2012.08.001.

  46. 46.

    De Francesco F, Ricci G, D’Andrea F, Nicoletti GF, Ferraro GA. Human adipose stem cells: from bench to bedside. Tissue Eng Part B Rev. 2015;21:572–84. https://doi.org/10.1089/ten.TEB.2014.0608.

  47. 47.

    Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 2013;2013:130763. https://doi.org/10.1155/2013/130763.

  48. 48.

    De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy. World J Stem Cells. 2016;8:73–87. https://doi.org/10.4252/wjsc.v8.i3.73.

  49. 49.

    Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4:206–16. https://doi.org/10.1016/j.stem.2009.02.001.

  50. 50.

    Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells. 2017;35:1446–60. https://doi.org/10.1002/stem.2614.

  51. 51.

    Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med. 2008;14:181–7. https://doi.org/10.1038/nm1703.

  52. 52.

    Zhang T, Tseng C, Zhang Y, Sirin O, Corn PG, Li-Ning-Tapia EM, et al. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nat Commun. 2016;7:11674. https://doi.org/10.1038/ncomms11674.

  53. 53.

    Lin W, Xu L, Zwingenberger S, Gibon E, Goodman SB, Li G. Mesenchymal stem cells homing to improve bone healing. J Orthop Transl. 2017;9:19–27. https://doi.org/10.1016/j.jot.2017.03.002.

  54. 54.

    Naderi‐Meshkin H, Matin MM, Heirani‐Tabasi A, Mirahmadi M, Irfan-Maqsood M, Edalatmanesh MA, et al. Injectable hydrogel delivery plus preconditioning of mesenchymal stem cells: exploitation of SDF-1/CXCR4 axis toward enhancing the efficacy of stem cells’ homing. Cell Biol Int. 2016;40:730–41. https://doi.org/10.1002/cbin.10474.

  55. 55.

    Copper in cell culture. Sigma-Aldrich. Millipore Sigma, 2019. https://www.sigmaaldrich.com/life-science/cell-culture/learning-center/media-expert/copper.html. Accessed 22 Nov 2019.

  56. 56.

    Lamfers M, Idema S, van Milligen F, Schouten T, van der Valk P, VAndertop P, et al. Homing properties of adipose-derived stem cells to intracerebral glioma and the effects of adenovirus infection. Cancer Lett. 2009;274:78–87. https://doi.org/10.1016/j.canlet.2008.08.035.

  57. 57.

    Okubo T, Hayashi D, Yaguchi T, Fujita Y, Sakaue M, Suzuki T, et al. Differentiation of rat adipose tissue-derived stem cells into neuron-like cells by valproic acid, a histone deacetylase inhibitor. Exp Anim. 2016;65:45–51. https://doi.org/10.1538/expanim.15-0038.

  58. 58.

    Hu F, Sun B, Xu P, Zhu Y, Meng XH, Teng GJ, Xiao ZD. MiR-218 induces neuronal differentiation of ASCs in a temporally sequential manner with fibroblast growth factor by regulation of the Wnt signaling pathway. Sci Rep. 2017;7:39427. https://doi.org/10.1038/srep39427.

  59. 59.

    Ban J-J, Yang S, Im W, Kim M. Neurogenic effects of cell-free extracts of adipose stem cells. PLoS ONE. 2016;11:e0148691. https://doi.org/10.1371/journal.pone.0148691.

  60. 60.

    Blecker D, Elashry MI, Heimann M, Wenisch S, Arnhold S. New insights into the neural differentiation potential of canine adipose tissue-derived mesenchymal stem cells. Anat Histol Embryol. 2017;46:304–15. https://doi.org/10.1111/ahe.12270.

  61. 61.

    Watanabe Y, Sasaki R, Matsumine H, Yamato M, Okano T. Undifferentiated and differentiated adipose-derived stem cells improve nerve regeneration in a rat model of facial nerve defect. J Tissue Eng Regen Med. 2017;11:362–74. https://doi.org/10.1002/term.1919.

  62. 62.

    George S, Hamblin MR, Abrahamse H. Current and future trends in adipose stem cell differentiation into neuroglia. Photomed Laser Surg. 2018;36:230–40. https://doi.org/10.1089/pho.2017.4411.

Download references

Author information

Correspondence to Julie A. Semon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thyparambil, N.J., Gutgesell, L.C., Hurley, C.C. et al. Adult stem cell response to doped bioactive borate glass. J Mater Sci: Mater Med 31, 13 (2020). https://doi.org/10.1007/s10856-019-6353-4

Download citation