Advertisement

Biodegradable silver-loaded polycation modified nanodiamonds/polyurethane scaffold with improved antibacterial and mechanical properties for cartilage tissue repairing

  • Lina Wang
  • Weiwei Cao
  • Xi Wang
  • Peili Li
  • Jie Zhou
  • Gaoke Zhang
  • Xin Li
  • Xiaodong XingEmail author
Tissue Engineering Constructs and Cell Substrates Original Research
Part of the following topical collections:
  1. Tissue Engineering Constructs and Cell Substrates

Abstract

For cartilage tissue repairing, it remains a key challenge to design implant materials with antibacterial activity, proper degradation rate and mechanical property. In this research, antibacterial nanodiamonds (QND, QND-Ag) modified acrylate-terminated polyurethanes (APU) were prepared. By the addition of nanocomposites, the crystallinity of modified APU obviously increased, which indicates a strong interaction between NDs and APU. Tensile and compression tests were carried out to evaluate the improved mechanical properties. Compared with APU, APU(10%PEG)/QND-Ag possessed the increased modulus and strength, a nevertheless slight decrease in elongation at break. Due to the dual actions of contact-killing of cationic polymers and release-killing of the Ag NPs, QND-Ag-containing polyurethane showed excellent antibacterial activity against Staphylococcus aureus. Moreover, APU containing polyethylene glycol showed a significant increase in degradability rates. Consequently, owing to the dual effect of crystallinity and hydrophilicity, our modified APU exhibited the proper degradation rate adaptable to the healing rate of cartilage tissue. Furthermore, the CCK-8 results demonstrated that synthesized samples were low toxic. Therefore, APU(10%PEG)/QND-Ag holds great promise for the application of cartilage tissue repairing.

Notes

Acknowledgements

This study was supported by state funding Natural Science Foundation of China (No. 81460107 and No. 51508233).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10856_2019_6244_MOESM1_ESM.docx (1.8 mb)
Supplementary Information.

References

  1. 1.
    Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol. 2011;7:22–39.CrossRefGoogle Scholar
  2. 2.
    Hayashi T. Biodegradable polymers for biomedical uses. Prog Polym Sci. 1994;19:663–702.CrossRefGoogle Scholar
  3. 3.
    Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44:5713–24.CrossRefGoogle Scholar
  4. 4.
    Loh XJ, Sng KBC, Li J. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials. 2008;29:3185–94.CrossRefGoogle Scholar
  5. 5.
    Kim EH, Myoung SW, Jung YG, Paik U. Polyhedral oligomeric silsesquioxane-reinforced polyurethane acrylate. Prog Org Coat. 2009;64:205–9.CrossRefGoogle Scholar
  6. 6.
    Mi HY, Jing X, Napiwocki BN, Hagerty BS, Chen G, Turng LS. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J Mater Chem B. 2017;5:4137–51.CrossRefGoogle Scholar
  7. 7.
    Li Z, Lang G, Chen X, Sacks H, Mantzur C, Tropp U, Mader KT, Smallwood TC, Sammon C, Richards RG, Alini M, Grad S. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement. Biomaterials. 2016;84:196–209.CrossRefGoogle Scholar
  8. 8.
    Bezwada RS, Jamiolkowski DD, Lee IY, Agarwal V, Persivale J, Trenka-Benthin S, Erneta M, Suryadevara J, Yang A, Liu S. Monocryl(R) suture, a new ultra-pliable absorbable monofilament suture. Biomaterials. 1995;16:1141–8.CrossRefGoogle Scholar
  9. 9.
    Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG. The intracellular degradation of poly (ε-caprolactone). J Biomed Mater Res. 1985;19:437–44.CrossRefGoogle Scholar
  10. 10.
    Pitt GG, Gratzl MM, Kimmel GL, Surles J, Schindler A. Aliphatic polyesters. II. The degradation of poly (DL-lactide), poly (e-caprolactone), and their copolymers in vivo. Biomaterials. 1981;2:215–220.CrossRefGoogle Scholar
  11. 11.
    Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35:403–40.CrossRefGoogle Scholar
  12. 12.
    Kang X, Xie Y, Powell HM, Lee LJ, Belury MA, Lannutti JJ, Kniss DA. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials. 2007;28:450–8.CrossRefGoogle Scholar
  13. 13.
    Erbe E, Marx J, Clineff T, Bellincampi L. Potential of an ultraporous β-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J. 2001;10:141–6.CrossRefGoogle Scholar
  14. 14.
    Niu Y, Chen KC, He T, Yu W, Huang S, Xu K. Scaffolds from block polyurethanes based on poly (ɛ-caprolactone)(PCL) and poly (ethylene glycol)(PEG) for peripheral nerve regeneration. Biomaterials. 2014;35:4266–77.CrossRefGoogle Scholar
  15. 15.
    Mondal S, Martin D. Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polym Degrad Stab. 2012;97:1553–61.CrossRefGoogle Scholar
  16. 16.
    Gorna K, Gogolewski S. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res A. 2003;67:813–27.CrossRefGoogle Scholar
  17. 17.
    Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev. 2018;58:164–207.CrossRefGoogle Scholar
  18. 18.
    Passeri D, Rinaldi F, Ingallina C, Carafa M, Rossi M, Terranova ML, Marianecci C. Biomedical applications of nanodiamond: an overview. J Nanosci Nanotechno. 2015;15:972–88.CrossRefGoogle Scholar
  19. 19.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamond. Nat Nanotechnol. 2012;7:11–23.CrossRefGoogle Scholar
  20. 20.
    Xi G, Robinson E, Mania-Farnell B, Fausto Vanin E, Shim KW, Takao T, Victoria Allender E, Shekhar Mayanil C, Bento Soares M, Ho D, Tomita T. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomed Nanotechnol. 2014;10:381–91.CrossRefGoogle Scholar
  21. 21.
    Liu KK, Zheng WW, Wang CC, Chiu YC, Cheng CL, Lo YS, Chen C, Chao JI. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21:315106.CrossRefGoogle Scholar
  22. 22.
    Zhang Q, Mochalin VN, Neitzel I, Knoke IY, Han J, Klug CA, Zhou JG, Lelkes PI, Gogotsi Y. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials. 2011;32:87–94.CrossRefGoogle Scholar
  23. 23.
    Maitra U, Prasad KE, Ramamurty U, Rao CNR. Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Commun. 2009;149:1693–7.CrossRefGoogle Scholar
  24. 24.
    Alishiri M, Shojaei A, Abdekhodaie MJ. Biodegradable polyurethane acrylate/HEMA-grafted nanodiamond composites with bone regenerative potential applications: structure, mechanical properties and biocompatibility. RSC Adv. 2016;6:8743–55.CrossRefGoogle Scholar
  25. 25.
    Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33:5967–82.CrossRefGoogle Scholar
  26. 26.
    Zhang Y, He X, Ding M, He W, Li J, Tan H. Antibacterial and biocompatible cross-linked waterborne polyurethanes containing gemini quaternary ammonium salts. Biomacromolecules. 2018;19:279–87.CrossRefGoogle Scholar
  27. 27.
    Yeroslavsky G, Lavi R, Alishaev A, Rahimipour S. Sonochemically-produced metal-containing polydopamine nanoparticles and their antibacterial and antibiofilm activity. Langmuir. 2016;32:5201–12.CrossRefGoogle Scholar
  28. 28.
    Gottenbos B, vander Mei HC, Klatter F, Grijpma DW, Feijen J, Nieuwenhuis P, Busscher HJ. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials. 2003;24:2707–10.CrossRefGoogle Scholar
  29. 29.
    Yao C, Li X, Neoh KG, Shi Z, Kang ET. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Membr Sci. 2008;320:259–67.CrossRefGoogle Scholar
  30. 30.
    Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol. 2009;5:452–6.CrossRefGoogle Scholar
  31. 31.
    Saravanan M, Vemu AK, Barik SK. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloid Surf B. 2011;88:325–31.CrossRefGoogle Scholar
  32. 32.
    Melo MA, Orrego S, Weir MD, Xu HH, Arola DD. Designing multiagent dental materials for enhanced resistance to biofilm damage at the bonded interface. ACS Appl Mater Interfaces. 2016;8:11779–87.CrossRefGoogle Scholar
  33. 33.
    Cao W, Wang X, Li Q, Ye Z, Xing X. Mechanical property and antibacterial activity of silver-loaded polycation functionalized nanodiamond for use in resin-based dental material formulations. Mater Lett. 2018;220:104–7.CrossRefGoogle Scholar
  34. 34.
    Mi HY, Jing X, Jacques BR, Turng LS, Peng XF. Characterization and properties of electrospun thermoplastic polyurethane blend fibers: effect of solution rheological properties on fiber formation. J Mater Res. 2013;28:2339–50.CrossRefGoogle Scholar
  35. 35.
    Li G, Li D, Niu Y, He T, Chen KC, Xu K. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials. J Biomed Mater Res A. 2014;102:685–97.CrossRefGoogle Scholar
  36. 36.
    Crescenzi V, Manzini G, Calzolari G, Borri C. Thermodynamics of fusion of poly-β-propiolactone and poly-ϵ-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J. 1972;8:449–463.CrossRefGoogle Scholar
  37. 37.
    Alishiri M, Shojaei A, Abdekhodaie MJ, Yeganeh H. Synthesis and characterization of biodegradable acrylated polyurethane based on poly (ε-caprolactone) and 1, 6-hexamethylene diisocyanate. Mater Sci Eng C. 2014;42:763–73.CrossRefGoogle Scholar
  38. 38.
    Tamayo L, Acuña D, Riveros AL, Kogan MJ, Azocar MI, Páez M, Leal M, Urzúa M, Cerda E. Porous nanogold/polyurethane scaffolds with improved antibiofilm, mechanical, and thermal properties and with reduced effects on cell viability: a suitable material for soft tissue applications. ACS Appl Mater Interfaces. 2018;10:13361–72.CrossRefGoogle Scholar
  39. 39.
    Nam S, French AD, Condon BD, Concha M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohyd Polym. 2016;135:1–9.CrossRefGoogle Scholar
  40. 40.
    Khanna YP, Kuhn WP. Measurement of crystalline index in nylons by DSC: complexities and recommendations. J Polym Sci Pol Phys. 1997;35:2219–31.CrossRefGoogle Scholar
  41. 41.
    Haider MS, Shao GN, Imran SM, Park SS, Abbas N, Tahir MS, Hussain M, Bae W, Kim HT. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater Sci Eng C. 2016;62:732–45.CrossRefGoogle Scholar
  42. 42.
    Gao N, Yan Y, Chen X, Mee DJ. Nanoparticle-induced morphology and hydrophilicity of structured surfaces. Langmuir. 2012;28:12256–65.CrossRefGoogle Scholar
  43. 43.
    Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005;26:3961–71.CrossRefGoogle Scholar
  44. 44.
    Zhai YJ, Wang ZC, Huang W, Huang JJ, Wang YY, Zhao YQ. Improved mechanical properties of epoxy reinforced by low content nanodiamond powder. Mater Sci Eng A. 2011;528:7295–300.CrossRefGoogle Scholar
  45. 45.
    Lee SI, Yu SC, Lee YS. Degradable polyurethanes containing poly (butylene succinate) and poly (ethylene glycol). Polym Degrad Stab. 2001;72:81–7.CrossRefGoogle Scholar
  46. 46.
    Fernández-d’Arlas B, Khan U, Rueda L, Martin L, Ramos JA, Coleman JN, González ML, Valea A, Mondragon I, Corcuera MA, Eceiza A. Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. Compos Sci Technol. 2012;72:235–42.CrossRefGoogle Scholar
  47. 47.
    Almarza AJ, Athanasiou KA. Design characteristics for the tissue engineering of cartilaginous tissues. Ann Biomed Eng. 2004;32:2–17.CrossRefGoogle Scholar
  48. 48.
    Li Q, Yong C, Cao W, Wang X, Wang L, Zhou J, Xing X. Fabrication of charge reversible graphene oxide-based nanocomposite with multiple antibacterial modes and magnetic recyclability. J Colloid Interf Sci. 2018;511:285–95.CrossRefGoogle Scholar
  49. 49.
    Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–54.CrossRefGoogle Scholar
  50. 50.
    Lee JH, Park JW, Lee HB. Cell adhesion and growth on polymer surfaces with hydroxyl groups prepared by water vapour plasma treatment. Biomaterials. 1991;12:443–8.CrossRefGoogle Scholar
  51. 51.
    Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, Choi KS. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998;19:851–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations