Advertisement

Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting

  • Olivia KérourédanEmail author
  • Jean-Michel Bourget
  • Murielle Rémy
  • Sylvie Crauste-Manciet
  • Jérôme Kalisky
  • Sylvain Catros
  • Noëlie B. Thébaud
  • Raphaël Devillard
S.I.: Biofabrication and Bioinks for Tissue Engineering Original Research
Part of the following topical collections:
  1. S.I.: Biofabrication and Bioinks for Tissue Engineering

Abstract

Development of a microvasculature into tissue-engineered bone substitutes represents a current challenge. Seeding of endothelial cells in an appropriate environment can give rise to a capillary-like network to enhance prevascularization of bone substitutes. Advances in biofabrication techniques, such as bioprinting, could allow to precisely define a pattern of endothelial cells onto a biomaterial suitable for in vivo applications. The aim of this study was to produce a microvascular network following a defined pattern and preserve it while preparing the surface to print another layer of endothelial cells. We first optimise the bioink cell concentration and laser printing parameters and then develop a method to allow endothelial cells to survive between two collagen layers. Laser-assisted bioprinting (LAB) was used to pattern lines of tdTomato-labeled endothelial cells cocultured with mesenchymal stem cells seeded onto a collagen hydrogel. Formation of capillary-like structures was dependent on a sufficient local density of endothelial cells. Overlay of the pattern with collagen I hydrogel containing vascular endothelial growth factor (VEGF) allowed capillary-like structures formation and preservation of the printed pattern over time. Results indicate that laser-assisted bioprinting is a valuable technique to pre-organize endothelial cells into high cell density pattern in order to create a vascular network with defined architecture in tissue-engineered constructs based on collagen hydrogel.

Notes

Acknowledgements

This work was supported by the Institut français pour la recherche odontologique (IFRO) and Bordeaux Consortium for Regenerative Medicine (BxCRM). The authors acknowledge «Fondation des Gueules Cassées, Paris-France » (n°54-2017) and « Fondation de l’Avenir, Paris-France» (N°AP-RM-17-038) for their financial support. The authors would also like to thank Sophia Ziane (INSERM U1026, Bordeaux, France), Nathalie Dusserre and Davit Hakobyan (ART Bioprint, INSERM U1026, Bordeaux, France) and Sébastien Marais (Bordeaux Imaging Center, Bordeaux, France) for their excellent technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10856_2019_6230_MOESM1_ESM.mp4 (25.6 mb)
Supplementary Movie
10856_2019_6230_MOESM2_ESM.tif (4.5 mb)
Supplementary Figure 1
10856_2019_6230_MOESM3_ESM.tif (11.5 mb)
Supplementary Figure 2
10856_2019_6230_MOESM4_ESM.jpg (186 kb)
Supplementary Figure 3

References

  1. 1.
    Van der Stok J, Van Lieshout EMM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands-a systematic literature review. Acta Biomater. 2011;7:739–50.CrossRefGoogle Scholar
  2. 2.
    García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112–21.CrossRefGoogle Scholar
  3. 3.
    Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M. Tissue engineering for bone defect healing: an update on a multi-component approach. Injury. 2008;39(Suppl 2):S9–20.CrossRefGoogle Scholar
  4. 4.
    Black CRM, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo ROC. Bone tissue engineering. CurrMol Biol Rep. 2015;1:132–40.CrossRefGoogle Scholar
  5. 5.
    Florencio-Silva R, Sasso GR, da S, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746CrossRefGoogle Scholar
  6. 6.
    Samuel SP, Baran GR, Wei Y, Davis BL. Biomechanics-Part II. In: Khurana JS, editor. Bone Pathology. Totowa: Humana Press; 2009. p. 69–77.Google Scholar
  7. 7.
    Santos MI, Reis RL. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci. 2009;10:12–27.Google Scholar
  8. 8.
    Mercado-Pagán ÁE, Stahl AM, Shanjani Y, Yang Y. Ann Biomed Eng.2015;43:718–29.CrossRefGoogle Scholar
  9. 9.
    Kirkpatrick CJ. Developing cellular systems in vitro to simulate regeneration. Tissue Eng Part A. 2014;20:1355–7.CrossRefGoogle Scholar
  10. 10.
    Liu Y, Lu J, Li H, Wei J, Li X. Engineering blood vessels through micropatterned co-culture of vascular endothelial and smooth muscle cells on bilayered electrospun fibrous mats with pDNA inoculation. Acta Biomater. 2015;11:114–25.CrossRefGoogle Scholar
  11. 11.
    Liu Y, Teoh S-H, Chong MSK, Lee ESM, Mattar CNZ, Randhawa NK, et al. Vasculogenic and osteogenesis-enhancing potential of human umbilical cord blood endothelial colony-forming cells. Stem Cells. 2012;30:1911–24.CrossRefGoogle Scholar
  12. 12.
    Pirraco RP, Iwata T, Yoshida T, Marques AP, Yamato M, Reis RL, et al. Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets. Lab Investig J Tech Methods Pathol. 2014;94:663–73.CrossRefGoogle Scholar
  13. 13.
    Fuchs S, Ghanaati S, Orth C, Barbeck M, Kolbe M, Hofmann A, et al. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials. 2009;30:526–34.CrossRefGoogle Scholar
  14. 14.
    Unger RE, Ghanaati S, Orth C, Sartoris A, Barbeck M, Halstenberg S, et al. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials. 2010;31:6959–67.CrossRefGoogle Scholar
  15. 15.
    Unger RE, Dohle E, Kirkpatrick CJ. Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv Drug Deliv Rev. 2015;94:116–25.CrossRefGoogle Scholar
  16. 16.
    Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication. 2009;1:022001.CrossRefGoogle Scholar
  17. 17.
    Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6:2494–500.CrossRefGoogle Scholar
  18. 18.
    Bohandy J, Kim BF, Adrian FJ. Metal deposition from a supported metal film using an excimer laser. J Appl Phys. 1986;60:1538–9.CrossRefGoogle Scholar
  19. 19.
    Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB. Laser-based direct-write techniques for cell printing. Biofabrication. 2010;2:032001.CrossRefGoogle Scholar
  20. 20.
    Unger C, Gruene M, Koch L, Koch J, Chichkov BN. Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Appl Phys A. 2011;103:271–7.CrossRefGoogle Scholar
  21. 21.
    Colina M, Serra P, Fernández-Pradas JM, Sevilla L, Morenza JL. DNA deposition through laser induced forward transfer. Biosens Bioelectron. 2005;20:1638–42.CrossRefGoogle Scholar
  22. 22.
    Dinca V, Kasotakis E, Catherine J, Mourka A, Mitraki A, Popescu A, et al. Development of peptide-based patterns by laser transfer. Appl Surf Sci. 2007;254:1160–3.CrossRefGoogle Scholar
  23. 23.
    Hopp B, Smausz T, Papdi B, Bor Z, Szabó A, Kolozsvári L, et al. Laser-based techniques for living cell pattern formation. Appl Phys Mater Sci Process. 2008;93:45–9.CrossRefGoogle Scholar
  24. 24.
    Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2:014101.CrossRefGoogle Scholar
  25. 25.
    Wu PK, Ringeisen BR. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication. 2010;2:014111.CrossRefGoogle Scholar
  26. 26.
    Thébaud NB, Bareille R, Daculsi R, Bourget C, Rémy M, Kerdjoudj H, et al. Polyelectrolyte multilayer films allow seeded human progenitor-derived endothelial cells to remain functional under shear stress in vitro. Acta Biomater. 2010;6:1437–45.CrossRefGoogle Scholar
  27. 27.
    Thébaud NB, Aussel A, Siadous R, Toutain J, Bareille R, Montembault A, et al. Labeling and qualification of endothelial progenitor cells for tracking in tissue engineering: An in vitro study. Int J Artif Organs. 2015;38:224–32.CrossRefGoogle Scholar
  28. 28.
    Devillard R, Rémy M, Kalisky J, Bourget J-M, Kérourédan O, Siadous R, et al. In vitro assessment of a collagen/alginate composite scaffold for regenerative endodontics. Int Endod J. 2017;50:48–57.CrossRefGoogle Scholar
  29. 29.
    Carpentier G. ImageJ contribution: Angiogenesis Analyzer. 2012. Disponible sur: https://imagej.nih.gov/ij/macros/toolsets/Angiogenesis%20Analyzer.txt.
  30. 30.
    Li Y, Huang G, Zhang X, Wang L, Du Y, Lu TJ, et al. Engineering cell alignment in vitro. Biotechnol Adv. 2014;32:347–65.CrossRefGoogle Scholar
  31. 31.
    Devillard R, Pagès E, Correa MM, Kériquel V, Rémy M, Kalisky J, et al. Cell patterning by laser-assisted bioprinting. Methods Cell Biol. 2014;119:159–74.CrossRefGoogle Scholar
  32. 32.
    Bourget J-M, Kérourédan O, Medina M, Rémy M, Thébaud NB, Bareille R, et al. Patterning of endothelial cells and mesenchymal stem cells by laser-assisted bioprinting to study cell migration. Biomed Res Int. 2016;2016:3569843.CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Xu C, Xiong R, Chrisey DB, Huang Y. Effects of living cells on the bioink printability during laser printing. Biomicrofluidics. 2017;11:034120.CrossRefGoogle Scholar
  34. 34.
    Gruene M, Pflaum M, Deiwick A, Koch L, Schlie S, Unger C, et al. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication. 2011;3:015005.CrossRefGoogle Scholar
  35. 35.
    Catros S, Fricain J-C, Guillotin B, Pippenger B, Bareille R, Remy M, et al. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 2011;3:025001.CrossRefGoogle Scholar
  36. 36.
    Li H, Daculsi R, Grellier M, Bareille R, Bourget C, Remy M, et al. The role of vascular actors in two dimensional dialogue of human bone marrow stromal cell and endothelial cell for inducing self-assembled network. PLoS ONE. 2011;6:e16767.CrossRefGoogle Scholar
  37. 37.
    Grellier M, Ferreira-Tojais N, Bourget C, Bareille R, Guillemot F, Amédée J. Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells. J Cell Biochem. 2009;106:390–8.CrossRefGoogle Scholar
  38. 38.
    Grellier M, Bordenave L, Amédée J. Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol. 2009;27:562–71.CrossRefGoogle Scholar
  39. 39.
    Skardal A, Atala A. Biomaterials for integration with 3-d bioprinting. Ann Biomed Eng. 2015;43:730–46.CrossRefGoogle Scholar
  40. 40.
    Nguyen EH, Daly WT, Le NNT, Farnoodian M, Belair DG, Schwartz MP, et al. Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat Biomed Eng. 2017;1.Google Scholar
  41. 41.
    Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–90.CrossRefGoogle Scholar
  42. 42.
    Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res. 1992;202:1–8.CrossRefGoogle Scholar
  43. 43.
    Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation. 2000;101:118–21.CrossRefGoogle Scholar
  44. 44.
    Henry null, Abraham null. Review of preclinical and clinical results with vascular endothelial growth factors for therapeutic angiogenesis. Curr Interv Cardiol Rep. 2000;2:228–41.Google Scholar
  45. 45.
    Wang L, Yan M, Wang Y, Lei G, Yu Y, Zhao C, et al. Proliferation and osteo/odontoblastic differentiation of stem cells from dental apical papilla in mineralization-inducing medium containing additional KH(2)PO(4). Cell Prolif. 2013;46:214–22.CrossRefGoogle Scholar
  46. 46.
    Thébaud NB, Siadous R, Bareille R, Remy M, Daculsi R, Amédée J, et al. Whatever their differentiation status, human progenitor derived-or mature-endothelial cells induce osteoblastic differentiation of bone marrow stromal cells. J Tissue Eng Regen Med. 2012;6:e51–60.CrossRefGoogle Scholar
  47. 47.
    Koh W, Stratman AN, Sacharidou A, Davis GE. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol. 2008;443:83–101.CrossRefGoogle Scholar
  48. 48.
    Bowers SLK, Norden PR, Davis GE. Molecular signaling pathways controlling vascular tube morphogenesis and pericyte-induced tube maturation in 3D extracellular matrices. Adv Pharmacol San Diego Calif. 2016;77:241–80.CrossRefGoogle Scholar
  49. 49.
    Kawecki F, Clafshenkel WP, Auger FA, Bourget J-M, Fradette J, Devillard R. Self-assembled human osseous cell sheets as living biopapers for the laser-assisted bioprinting of human endothelial cells. Biofabrication. 2018;10:035006.CrossRefGoogle Scholar
  50. 50.
    Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7:1778.CrossRefGoogle Scholar
  51. 51.
    Cooper GM, Miller ED, Decesare GE, Usas A, Lensie EL, Bykowski MR, et al. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A. 2010;16:1749–59.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Olivia Kérourédan
    • 1
    • 2
    • 3
    Email author
  • Jean-Michel Bourget
    • 1
    • 6
  • Murielle Rémy
    • 1
    • 2
  • Sylvie Crauste-Manciet
    • 4
    • 5
  • Jérôme Kalisky
    • 1
    • 2
  • Sylvain Catros
    • 1
    • 2
    • 3
  • Noëlie B. Thébaud
    • 1
    • 2
    • 3
  • Raphaël Devillard
    • 1
    • 2
    • 3
  1. 1.INSERM, Bioingénierie Tissulaire, U1026BordeauxFrance
  2. 2.Université de Bordeaux, Bioingénierie Tissulaire, U1026BordeauxFrance
  3. 3.CHU de Bordeaux, Services d’Odontologie et de Santé BuccaleBordeauxFrance
  4. 4.Université de Bordeaux, ARNA Laboratory, team ChemBioPharm, U1212 INSERM – UMR 5320 CNRSBordeauxFrance
  5. 5.CHU de Bordeaux, Pharmacie du Groupe Hospitalier SudPessacFrance
  6. 6.Energie, matériaux et télécommunicationInstitut National de Recherche ScientifiqueVarenneCanada

Personalised recommendations