Advertisement

Synthesis of SiO2 nanostructures from Pennisetum glaucum and their effect on osteogenic differentiation for bone tissue engineering applications

  • Jegan Athinarayanan
  • Vaiyapuri Subbarayan Periasamy
  • Akram Ahmed Qasem
  • Reshod A. Al-Shagrawi
  • Ali A. AlshatwiEmail author
Tissue Engineering Constructs and Cell Substrates Original Research
Part of the following topical collections:
  1. Tissue Engineering Constructs and Cell Substrates

Abstract

Silica nanostructures were fabricated from Pennisetum glaucum (pearl millet) seed husk by acid-pretreatment and calcination. The fabricated silica nanostructure (SN) functional groups, crystalline nature, surface morphology, and particle size were analyzed by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. Additionally, the cytocompatibility of SNs was analyzed on human mesenchymal stem cells (hMSCs) in an MTT assay, propidium iodine (PI) staining, and acridine orange/ethidium bromide (AO/EB) staining. We observed peaks at 1090 and 800 cm−1, which were assigned to symmetric, asymmetric, and bending vibrations of O–Si–O. The SNs showed an amorphous nature with a spherical shape and were 20–60 nm in diameter. The MTT assay results indicated that SNs exhibited cytocompatibility in hMSCs. The PI staining and AO/EB staining results suggested that SNs do not affect nuclear morphology at up to 400 μg/mL. Furthermore, SNs effect on osteogenic differentiation in hMSCs was studied. These results indicate that SNs induced osteogenic differentiation in hMSCs by upregulation of ALP, BSP, ON and RUNX2 genes. Our process could valorize the Pennisetum glaucum agricultural residues to high value products for bone tissue engineering applications.

Notes

Acknowledgements

We gratefully acknowledge the financial support of the Distinguished Scientist Fellowship Programme, King Saud University, Saudi Arabia. The partial work of this manuscript has achieved a US patent (US patent granted on 2 August 2016, US 9403688 B1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwi AA. Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int. 2015;41:275–81.CrossRefGoogle Scholar
  2. 2.
    Alshatwi AA, Athinarayanan J, Periasamy VS. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng C. 2015;47:8–16.CrossRefGoogle Scholar
  3. 3.
    Athinarayanan J, Periasamy VS, Alhazmi M, Alshatwi AA. Synthesis and biocompatibility assessment of sugarcane bagasse‐derived biogenic silica nanoparticles for biomedical applications. J Biomed Mater Res B. 2017;105:340–9.CrossRefGoogle Scholar
  4. 4.
    Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and Earth-abundant materials. Chem Rev. 2016;116:10731–819.CrossRefGoogle Scholar
  5. 5.
    Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chem Rev. 2016;116:14493–586.CrossRefGoogle Scholar
  6. 6.
    Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114:5161–214.CrossRefGoogle Scholar
  7. 7.
    Slowing II, Trewyn BG, Giri S, Lin VY. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater. 2007;17:1225–36.CrossRefGoogle Scholar
  8. 8.
    Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41:2590–605.CrossRefGoogle Scholar
  9. 9.
    Burns A, Ow H, Wiesner U. Fluorescent core–shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev. 2006;35:1028–42.CrossRefGoogle Scholar
  10. 10.
    Rahman IA, Padavettan V. Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater. 2012;2012:8.CrossRefGoogle Scholar
  11. 11.
    Jeong S, Garnett EC, Wang S, Yu Z, Fan S, Brongersma ML, McGehee MD, Cui Y. Hybrid silicon nanocone–polymer solar cells. Nano Lett. 2012;12:2971–6.CrossRefGoogle Scholar
  12. 12.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.CrossRefGoogle Scholar
  13. 13.
    Gholami T, Salavati-Niasari M, Bazarganipour M, Noori E. Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by organic ligand. Superlattices Microstruct. 2013;61:33–41.CrossRefGoogle Scholar
  14. 14.
    Liou TH, Yang CC. Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mat Sci Eng B. 2011;176:521–9.CrossRefGoogle Scholar
  15. 15.
    Neethirajan S, Gordon R, Wang L. Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol. 2009;27:461–7.CrossRefGoogle Scholar
  16. 16.
    Kumar S, Soukup M, Elbaum R. Silicification in grasses: variation between different cell types. Front Plant Sci. 2017;8:438.Google Scholar
  17. 17.
    Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L. Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces. 2012;4:977–81.CrossRefGoogle Scholar
  18. 18.
    Chen H, Wang W, Martin JC, Oliphant AJ, Doerr PA, Xu JF, DeBorn KM, Chen C, Sun L.Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: a comprehensive utilization of rice husk biomass.ACS Sustain Chem Eng. 2012;1:254–9.CrossRefGoogle Scholar
  19. 19.
    Kamiya K, Oka AI, Nasu H, Hashimoto T. Comparative study of structure of silica gels from different sources. J Sol Gel Sci Technol. 2000;19:495–9.CrossRefGoogle Scholar
  20. 20.
    Mupa M, Hungwe CB, Witzleben S, Mahamadi C, Muchanyereyi N. Extraction of silica gel from Sorghum bicolour (L.) moench bagasse ash. Afr. J Pure Appl Chem. 2015;9:12–17.CrossRefGoogle Scholar
  21. 21.
    Chen H, Wang F, Zhang C, Shi Y, Jin G, Yuan S. Preparation of nano-silica materials: the concept from wheat straw. J Non Cryst Solids. 2010;356:2781–5.CrossRefGoogle Scholar
  22. 22.
    Chandrasekhar SA, Satyanarayana KG, Pramada PN, Raghavan P, Gupta TN. Review processing, properties and applications of reactive silica from rice husk—an overview. J Mater Sci. 2003;38:3159–68.CrossRefGoogle Scholar
  23. 23.
    Bansal V, Ahmad A, Sastry M. Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. J Am Chem Soc. 2006;128:14059–66.CrossRefGoogle Scholar
  24. 24.
    Periasamy VS, Athinarayanan J, Alfawaz MA, Alshatwi AA. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes. Chemosphere. 2016;144:275–84.CrossRefGoogle Scholar
  25. 25.
    Sankar S, Sharma SK, Kaur N, Lee B, Kim DY, Lee S, Jung H. Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceram Int. 2016;42:4875–85.CrossRefGoogle Scholar
  26. 26.
    San NO, Kurşungöz C, Tümtaş Y, Yaşa Ö, Ortaç B, Tekinay T. Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology. 2014;17:29–35.CrossRefGoogle Scholar
  27. 27.
    Affandi S, Setyawan H, Winardi S, Purwanto A, Balgis R. A facile method for production of high-purity silica xerogels from bagasse ash. Adv Polym Tech. 2009;20:468–72.CrossRefGoogle Scholar
  28. 28.
    Zaky RR, Hessien MM, El-Midany AA, Khedr MH, Abdel-Aal EA, El-Barawy KA. Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technol. 2008;185:31–35.CrossRefGoogle Scholar
  29. 29.
    Balamurugan M, Saravanan S. Producing nanosilica from Sorghum vulgare seed heads. Powder Technol. 2012;224:345–50.CrossRefGoogle Scholar
  30. 30.
    Rangaraj S, Venkatachalam R. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance. Appl Nanosci. 2017;7:145–53.CrossRefGoogle Scholar
  31. 31.
    Lu P, Hsieh YL. Highly pure amorphous silica nano-disks from rice straw. Powder Technol. 2012;225:149–55.CrossRefGoogle Scholar
  32. 32.
    Liou TH. Preparation and characterization of nano-structured silica from rice husk. Mat Sci Eng A. 2004;364:313–23.CrossRefGoogle Scholar
  33. 33.
    Ibrahim DM, Helmy M. Crystallite growth of rice husk ash silica. Thermochim Acta. 1981;45:79–85.CrossRefGoogle Scholar
  34. 34.
    Umeda J, Kondoh K. High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal. Ind Crops Prod. 2010;32:539–44.CrossRefGoogle Scholar
  35. 35.
    Goswami PP, Choudhury HA, Chakma S, Moholkar VS. Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Ind Eng Chem Res. 2013;52:17848–55.CrossRefGoogle Scholar
  36. 36.
    Sripanyakorn S, Jugdaohsingh R, Thompson RP, Powell JJ. Dietary silicon and bone health. Nutr Bull. 2005;30:222–30.CrossRefGoogle Scholar
  37. 37.
    Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res. 2004;19:297–307.CrossRefGoogle Scholar
  38. 38.
    Keeting PE, Oursler MJ, Wiegand KE, Bonde SK, Spelsberg TC, Riggs BL. Zeolite A increases proliferation, differentiation, and transforming growth factor β production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res. 1992;7:1281–9.CrossRefGoogle Scholar
  39. 39.
    Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127–35.CrossRefGoogle Scholar
  40. 40.
    Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013;25:3329–36.CrossRefGoogle Scholar
  41. 41.
    Wang C, Lin K, Chang J, Sun J. Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials. 2013;34:64–77.CrossRefGoogle Scholar
  42. 42.
    Jiao K, Niu LN, Li QH, Chen FM, Zhao W, Li JJ, Chen JH, Cutler CW, Pashley DH, Tay FR. Biphasic silica/apatite co-mineralized collagen scaffolds stimulate osteogenesis and inhibit RANKL-mediated osteoclastogenesis. Acta Biomater. 2015;19:23–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jegan Athinarayanan
    • 1
  • Vaiyapuri Subbarayan Periasamy
    • 1
  • Akram Ahmed Qasem
    • 1
  • Reshod A. Al-Shagrawi
    • 1
  • Ali A. Alshatwi
    • 1
    Email author
  1. 1.Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations