Advertisement

In vitro and in vivo evaluation of rotary-jet-spun poly(ɛ-caprolactone) with high loading of nano-hydroxyapatite

  • Telmo M. Andrade
  • Daphne C. R. Mello
  • Conceição M. V. Elias
  • Julia M. A. Abdala
  • Edmundo Silva
  • Luana M. R. Vasconcellos
  • Carla R. Tim
  • Fernanda R. Marciano
  • Anderson O. LoboEmail author
Biomaterials Synthesis and Characterization Rapid Communication
  • 63 Downloads
Part of the following topical collections:
  1. Biomaterials Synthesis and Characterization

Abstract

Herein, poly(ɛ-caprolactone) (PCL) mats with different amounts of nanohydroxyapatite (nHAp) were produced using rotary-jet spinning (RJS) and evaluated in vitro and in vivo. The mean fiber diameters of the PCL, PCL/nHAp (3%), PCL/nHAp (5%), and PCL/nHAp (20%) scaffolds were 1847 ± 1039, 1817 ± 1044, 1294 ± 4274, and 845 ± 248 nm, respectively. Initially, all the scaffolds showed superhydrophobic behavior (contact angle around of 140oC), but decreased to 80° after 30 min. All the produced scaffolds were bioactive after soaking in simulated body fluid, especially PCL/nHAp (20%). The crystallinity of the PCL scaffolds decreased progressively from 46 to 21% after incorporation of 20% nHAp. In vitro and in vivo cytotoxicity were investigated, as well as the mats’ ability to reduce bacteria biofilm formation. In vitro cellular differentiation was evaluated by measuring alkaline phosphatase activity and mineralized nodule formation. Overall, we identified the total ideal amount of nHAp to incorporate in PCL mats, which did not show in vitro or in vivo cytotoxicity and promoted lamellar bone formation independently of the amounts of nHAp. The scaffolds with nHAp showed reduced bacterial proliferation. Alizarin red staining was higher in materials associated with nHAp than in those without nHAp. Overall, this study demonstrates that PCL with nHAp prepared by RJS merits further evaluation for orthopedic applications.

Notes

Acknowledgements

AOL and FRM acknowledge the National Council for Scientific and Technological Development (AOL grant: 303752/2017-3 and FRM grant: 304133/2017-5) for support of this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Stocco TD, Bassous NJ, Zhao S, Granato AEC, Webster TJ, Lobo AO. Nanofibrous scaffolds for biomedical applications. Nanoscale. 2018;10:12228.  https://doi.org/10.1039/C8NR02002G.CrossRefGoogle Scholar
  2. 2.
    Martina M, Hutmacher DW. Biodegradable polymers applied in tissue engineering research: a review. Polym Int. 2007;56:145.  https://doi.org/10.1002/pi.2108.CrossRefGoogle Scholar
  3. 3.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529.  https://doi.org/10.1016/s0142-9612(00)00121-6.CrossRefGoogle Scholar
  4. 4.
    Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077. https://doi.org/10.1016/S0142-9612(02)00635-X.CrossRefGoogle Scholar
  5. 5.
    Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW. Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem. 2011;21:9419.  https://doi.org/10.1039/C0JM04502K.CrossRefGoogle Scholar
  6. 6.
    Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. 2004;10:33.  https://doi.org/10.1089/107632704322791673.
  7. 7.
    Oliveira JE, Mattoso LHC, Orts WJ, Medeiros ES. Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: A comparative study 2013;2013:14.  https://doi.org/10.1155/2013/409572.
  8. 8.
    Badrossamay MR, Balachandran K, Capulli AK., et al. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials. 2014;35:3188.  https://doi.org/10.1016/j.biomaterials.2013.12.072.CrossRefGoogle Scholar
  9. 9.
    Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: A review of spinning methodologies. Tissue Eng. 2006;12:435.  https://doi.org/10.1089/ten.2006.12.435.CrossRefGoogle Scholar
  10. 10.
    Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108:4754.  https://doi.org/10.1021/cr8004422.CrossRefGoogle Scholar
  11. 11.
    Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011;7:3813.  https://doi.org/10.1016/j.actbio.2011.07.002.CrossRefGoogle Scholar
  12. 12.
    Vallet-Regi M, Gonzalez-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32:1.  https://doi.org/10.1016/j.progsolidstchem.2004.07.001.CrossRefGoogle Scholar
  13. 13.
    Santana-Melo GF, Rodrigues BVM, da Silva E., et al. Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids Surf B-Biointerfaces. 2017;155:544.  https://doi.org/10.1016/j.colsurfb.2017.04.053.CrossRefGoogle Scholar
  14. 14.
    Khosravi A, Ghasemi-Mobarakeh L, Mollahosseini H., et al. Immobilization of silk fibroin on the surface of PCL nanofibrous scaffolds for tissue engineering applications. J Appl Polym Sci. 2018;135:8.  https://doi.org/10.1002/app.46684.CrossRefGoogle Scholar
  15. 15.
    Sharifi F, Atyabi SM, Norouzian D, Zandi M, Irani S, Bakhshi H. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol. 2018;115:243.  https://doi.org/10.1016/j.ijbiomac.2018.04.045.CrossRefGoogle Scholar
  16. 16.
    Goga F, Forizs E, Borodi G., et al. Behavior of doped hydroxyapatites during the heat treatment. Rev Chim. 2017;68:2907.Google Scholar
  17. 17.
    Linh NTB, Min YK, Lee BTJ. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. J Biomater Sci-Polym Ed. 2013;24:520.  https://doi.org/10.1080/09205063.2012.697696.CrossRefGoogle Scholar
  18. 18.
    Groppo MF, Caria PH, Freire AR., et al. The effect of a hydroxyapatite impregnated PCL membrane in rat subcritical calvarial bone defects. Arch Oral Biol. 2017;82:209.  https://doi.org/10.1016/j.archoralbio.2017.06.018.CrossRefGoogle Scholar
  19. 19.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts onnanophase ceramics. Biomaterials. 2000;21:1803.  https://doi.org/10.1016/S0142-9612(00)00075-2.CrossRefGoogle Scholar
  20. 20.
    Shi Z, Huang X, Cai Y, Tang R, Yang D. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater. 2009;5:338.  https://doi.org/10.1016/j.actbio.2008.07.023.CrossRefGoogle Scholar
  21. 21.
    Sethu SN, Namashivayam S, Devendran S., et al. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol. 2017;98:67.  https://doi.org/10.1016/j.ijbiomac.2017.01.089.CrossRefGoogle Scholar
  22. 22.
    Boanini E, Torricelli P, Sima F., et al. Gradient coatings of strontium hydroxyapatite/zinc β-tricalcium phosphate as a tool to modulate osteoblast/osteoclast response. J Inorg Biochem. 2018;183:1.  https://doi.org/10.1016/j.jinorgbio.2018.02.024.CrossRefGoogle Scholar
  23. 23.
    Kumar S, Raj S, Kolanthai E, Sood AK, Sampath S, Chatterjee K. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. Acs Appl Mater Inter. 2015;7:3237.  https://doi.org/10.1021/am5079732.CrossRefGoogle Scholar
  24. 24.
    Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16:397.  https://doi.org/10.1038/s41579-018-0019-y.CrossRefGoogle Scholar
  25. 25.
    Barbosa MC, Messmer NR, Brazil TR, Marciano FR, Lobo AO. The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Mat Sci Eng C-Mater. 2013;33:2620.  https://doi.org/10.1016/j.msec.2013.02.027.CrossRefGoogle Scholar
  26. 26.
    Barrere F, van Blitterswijk CA, de Groot K, Layrolle P. Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials. 2002;23:1921.  https://doi.org/10.1016/S0142-9612(01)00318-0.CrossRefGoogle Scholar
  27. 27.
    Zhang L, Chan C. Isolation and Enrichment of rat Mesenchymal Stem Cells (MSCs) and separation of single-colony derived MSCs. J Vis Exp.: 2010,1852.  https://doi.org/10.3791/1852.
  28. 28.
    do Prado RF, Esteves GC, Santos ELDS., et al. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. Plos One. 2018;13:e0196169.  https://doi.org/10.1371/journal.pone.0196169.CrossRefGoogle Scholar
  29. 29.
    Silva E, de Vasconcellos LMR, Rodrigues BV., et al. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Mater Sci Eng: C. 2017;73:31–39.  https://doi.org/10.1016/j.msec.2016.11.075.CrossRefGoogle Scholar
  30. 30.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907.  https://doi.org/10.1016/j.biomaterials.2006.01.017.CrossRefGoogle Scholar
  31. 31.
    Raucci MG, D’Antò V, Guarino V., et al. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. Acta Biomater. 2010;6:4090.  https://doi.org/10.1016/j.actbio.2010.04.018.CrossRefGoogle Scholar
  32. 32.
    Fabbri P, Bondioli F, Messori M, Bartoli C, Dinucci D. Porous scaffolds of polycaprolactone reinforced with in situgenerated hydroxyapatite for bone tissue engineering. J Mater Sci: Mater Med. 2010;21:343.  https://doi.org/10.1007/s10856-009-3839-5.CrossRefGoogle Scholar
  33. 33.
    Samavedi S, Olsen Horton C, Guelcher SA, Goldstein AS, Whittington AR. Fabrication of a model continuously graded co-electrospun mesh for regeneration of the ligament–bone interface. Acta Biomater. 2011;7:4131.  https://doi.org/10.1016/j.actbio.2011.07.008.CrossRefGoogle Scholar
  34. 34.
    Si JH, Cui ZX, Wang QT, Liu Q, Liu CT. Biomimetic composite scaffolds based on mineralization ofhydroxyapatite on electrospun poly(ɛ-caprolactone)/nanocellulose fibers. Carbohydr Polym. 2016;143:270.  https://doi.org/10.1016/j.carbpol.2016.02.015.CrossRefGoogle Scholar
  35. 35.
    Metwally HA, Ardazishvili RV, Severyukhina AN., et al. The influence of hydroxyapatite and calcium carbonate microparticles on the mechanical properties of nonwoven composite materials based on polycaprolactone. BioNanoScience. 2015;5:22.  https://doi.org/10.1007/s12668-014-0158-1.CrossRefGoogle Scholar
  36. 36.
    Peponi L, Sessini V, Arrieta MP., et al. Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polym Degrad Stab. 2018;151:36.  https://doi.org/10.1016/j.polymdegradstab.2018.02.019.CrossRefGoogle Scholar
  37. 37.
    Pal J, Singh S, Sharma S, Kulshreshtha R, Nandan B, Srivastava RK. Emulsion electrospun composite matrices of poly(ε-caprolactone)-hydroxyapatite: Strategy for hydroxyapatite confinement and retention on fiber surface. Mater Lett. 2016;167:288.  https://doi.org/10.1016/j.matlet.2015.12.164.CrossRefGoogle Scholar
  38. 38.
    Eftekhari H, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S. Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif Cells, Nanomed, Biotechnol. 2017;45:961.  https://doi.org/10.1080/21691401.2016.1198360.CrossRefGoogle Scholar
  39. 39.
    Jianyuan H, Minglong Y, Xianmo D. Biodegradable and biocompatible nanocomposites of poly(ϵ‐caprolactone) with hydroxyapatite nanocrystals: Thermal and mechanical properties. J Appl Polym Sci. 2002;86:676.  https://doi.org/10.1002/app.10955.CrossRefGoogle Scholar
  40. 40.
    Leung LH, DiRosa A, Naguib HE, Asme. Physical and mechanical properties of poly (e-caprolactone)-hydroxyapatite composites for bone tissue engineering applications. New York, NY: Amer Soc Mechanical Engineers; 2010.Google Scholar
  41. 41.
    Rodenas-Rochina J, Vidaurre A, Cortazar IC, Lebourg M. Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym Degrad Stabil. 2015;119:121.  https://doi.org/10.1016/j.polymdegradstab.2015.04.015.CrossRefGoogle Scholar
  42. 42.
    Phipps MC, Clem WC, Grunda JM, Dines GA, Bellis SL. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials. 2012;33:524.  https://doi.org/10.1016/j.biomaterials.2011.09.080.CrossRefGoogle Scholar
  43. 43.
    Nanda KK, Maisels A, Kruis FE, Fissan H, Stappert S. Higher surface energy of free nanoparticles. Phys Rev Lett. 2003;91:106102.  https://doi.org/10.1103/PhysRevLett.91.106102.CrossRefGoogle Scholar
  44. 44.
    Šupová M. Problem of hydroxyapatite dispersion in polymer matrices: a review. J Mater Sci: Mater Med. 2009;20:1201.  https://doi.org/10.1007/s10856-009-3696-2.CrossRefGoogle Scholar
  45. 45.
    Dong J, Uemura T, Kojima H, Kikuchi M, Tanaka J, Tateishi T. Application of low-pressure system to sustain in vivo bone formation in osteoblast/porous hydroxyapatite composite. Mater Sci Eng: C. 2001;17:37.  https://doi.org/10.1016/S0928-4931(01)00333-2.CrossRefGoogle Scholar
  46. 46.
    LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr Oral Sci. 1991;15:1.CrossRefGoogle Scholar
  47. 47.
    Wang SH, Ma D, Huang YP, Yao CL, Xie AJ, Shen YH. Synthesis and characterization of PCL/calcined bone composites. J Chil Chem Soc. 2013;58:1902.  https://doi.org/10.4067/s0717-97072013000300024.CrossRefGoogle Scholar
  48. 48.
    Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P. Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J Biomed Mater Res Part A. 2010;94A:241.  https://doi.org/10.1002/jbm.a.32657.CrossRefGoogle Scholar
  49. 49.
    Bhatia SK, Yetter AB. Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements. Cell Biol Toxicol. 2008;24:315.  https://doi.org/10.1007/s10565-007-9040-z.CrossRefGoogle Scholar
  50. 50.
    Zhang X, Li Y, Lv G, Zuo Y, Mu Y. Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites. Polym Degrad Stab. 2006;91:1202.  https://doi.org/10.1016/j.polymdegradstab.2005.02.006.CrossRefGoogle Scholar
  51. 51.
    Morouço P, Biscaia S, Viana T., et al. Fabrication of poly(ε-caprolactone) scaffolds reinforced with cellulose nanofibers, with and without the addition of hydroxyapatite nanoparticles. BioMed Res Int. 2016;2016:1596157.  https://doi.org/10.1155/2016/1596157.CrossRefGoogle Scholar
  52. 52.
    Atak BH, Buyuk B, Huysal M., et al. Preparation and characterization of amine functional nanohydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydr Polym. 2017;164:200.  https://doi.org/10.1016/j.carbpol.2017.01.100.CrossRefGoogle Scholar
  53. 53.
    Turnbull G, Clarke J, Picard F., et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3:278.  https://doi.org/10.1016/j.bioactmat.2017.10.001.CrossRefGoogle Scholar
  54. 54.
    Fu C, Bai H, Zhu J., et al. Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide. Plos One. 2017;12:e0188352.  https://doi.org/10.1371/journal.pone.0188352.CrossRefGoogle Scholar
  55. 55.
    Shao W, He J, Sang F., et al. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng. 2016;C58:342.  https://doi.org/10.1016/j.msec.2015.08.046.CrossRefGoogle Scholar
  56. 56.
    Ehnert S, Falldorf K, Fentz A-K., et al. Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure—Clinical implication possible. Bone Rep. 2015;3:48.  https://doi.org/10.1016/j.bonr.2015.08.002.CrossRefGoogle Scholar
  57. 57.
    Ambre AH, Katti DR, Katti KS. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. J Biomed Mater Res Part A. 2013;101:2644–60.  https://doi.org/10.1002/jbm.a.34561.CrossRefGoogle Scholar
  58. 58.
    Bhuiyan DB, Middleton JC, Tannenbaum R, Wick TM. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. J Biomater Sci Polym Ed. 2016;27:1139.  https://doi.org/10.1080/09205063.2016.1184121.CrossRefGoogle Scholar
  59. 59.
    Bhaskar B, Owen R, Bahmaee H, Wally Z, Sreenivasa Rao P, Reilly GC. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA‐only scaffolds. 2018;106:1334.  https://doi.org/10.1002/jbm.a.36336.
  60. 60.
    Shim J-H, Huh J-B, Park JY., et al. Fabrication of blended polycaprolactone/poly (Lactic-Co-GlycolicAcid)/β-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone tegeneration. Tissue Eng Part A. 2013;19:317.  https://doi.org/10.1089/ten.TEA.2011.0730.CrossRefGoogle Scholar
  61. 61.
    Chen XN, Gu YX, Lee JH, Lee WY, Wang HJ. Multifunctional surfaces with biomimetic nanofibres and drug-eluting micro-patterns for infection control and bone tissue formation. Eur Cells Mater. 2012;24:237–48.  https://doi.org/10.22203/eCM.v024a17.CrossRefGoogle Scholar
  62. 62.
    Mohamed W, Sommer U, Sethi S. et al. Intracellular proliferation of s. Aureus in osteoblasts and effects of rifampicin and gentamicin on s. Aureus intracellular proliferation and survival. Eur Cells Mater. 2014;28:258–68.  https://doi.org/10.22203/eCM.v028a18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Telmo M. Andrade
    • 1
  • Daphne C. R. Mello
    • 2
  • Conceição M. V. Elias
    • 1
  • Julia M. A. Abdala
    • 3
  • Edmundo Silva
    • 2
  • Luana M. R. Vasconcellos
    • 2
  • Carla R. Tim
    • 1
  • Fernanda R. Marciano
    • 1
  • Anderson O. Lobo
    • 1
    • 4
    Email author
  1. 1.Instituto Científico e TecnológicoUniversidade Brasil, ItaqueraSão PauloBrazil
  2. 2.Departamento de Biociência e Diagnóstico Oral, Instituto de Ciência e TecnologiaUniversidade Estadual de São PauloSão PauloBrazil
  3. 3.Instituto de Pesquisa e DesenvolvimentoUniversidade do Vale do ParaibaSão PauloBrazil
  4. 4.LIMAV-Laboratório Interdisciplinar de Materiais Avançados, PPGCM-Programa de Pós-graduação em Ciência e Engenharia de MateriaisUFPI-Universidade Federal do PiauíTeresinaBrazil

Personalised recommendations