A high current anodization to fabricate a nano-porous structure on the surface of Ti-based implants

  • Meng Zhang
  • Xuejiu Wang
  • Xiaobo HuangEmail author
  • Yongkang Wang
  • Ruiqiang Hang
  • Xiangyu Zhang
  • Xiaohong Yao
  • Bin Tang
Engineering and Nano-engineering Approaches for Medical Devices Original Research
Part of the following topical collections:
  1. Engineering and Nano-engineering Approaches for Medical Devices


In this study, an oxide layer on Ti-based implants is fabricated by using a high current anodization (HCA) technique in the nitrate electrolyte. This layer is composed of micro-pits and nano-porous arrays in the honeycomb structure. The results show that both the roughness and the layer thickness are related to the reaction time, whereas the size of nano-pores has little to do with the anodization duration. Compared to the nano-tubular arrays constructed by the conventional anodization, this nano-porous layer shows significantly improved mechanical stability. Furthermore, the in vitro assay of osteoblasts shows that cells behaviors on this surface can be modulated by the topology of this special layer. A suitable hierarchical structure composed of micro-pits and nano-porous structure can significantly stimulate osteoblasts attachment, activity, spreading and ALP function. Therefore, this hierarchical surface layer may provide a promising approach, which endows the Ti-based implants with better stability and osseointegration.



This work was supported by the Chinese Government Scholarship (No.201508140048), National Natural Science Foundation of China (31400815, 31300808), Beijing Natural Science Foundation (Nr.7152067) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (201417 and 201626).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19:1621–39.CrossRefGoogle Scholar
  2. 2.
    Gepreel MAH, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater. 2013;20:407–15.CrossRefGoogle Scholar
  3. 3.
    Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci. 2009;54:397–425.CrossRefGoogle Scholar
  4. 4.
    Gu´ehennec LL, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.CrossRefGoogle Scholar
  5. 5.
    Jonge LT, Leeuwenburgh SCG, Wolke JGC, Jansen JA. Organic–inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25:2357–69.CrossRefGoogle Scholar
  6. 6.
    Sula YT, Johansson C, Byon E, Albrektssona T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials. 2005;26:6720–30.CrossRefGoogle Scholar
  7. 7.
    Bose S, Robertson SF, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 2017;66:6–22.CrossRefGoogle Scholar
  8. 8.
    Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–59.CrossRefGoogle Scholar
  9. 9.
    Puleo DA, Nanci A. Understanding and controlling the bone–implant interface. Biomaterials. 1999;20:2311–21.CrossRefGoogle Scholar
  10. 10.
    Karazisis D, Petronis S, Agheli H, Emanuelsson L, Norlindh B, Johansson A, Rasmusson L, Thomsen P, Omar O. The influence of controlled surface nanotopography on the early biological events of osseointegration. Acta Biomater. 2017;53:559–71.CrossRefGoogle Scholar
  11. 11.
    Camargo WA, Takemoto S, Hoekstra JW, Leeuwenburgh SCG, Jansen JA, Beucken JJJP, Alghamdi HS. Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta Biomater. 2017;57:511–23.CrossRefGoogle Scholar
  12. 12.
    Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–41.CrossRefGoogle Scholar
  13. 13.
    Medvedev AE, Ng HP, Lapovok R, Estrin Y, Lowe TC, Anumalasetty VN. Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching. J Mech Behav Biomed Mater. 2016;57:55–68.CrossRefGoogle Scholar
  14. 14.
    Jayaraman M, Meyer U, Buhner M, Joos U, Wiesmann HP. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004;25:625–31.CrossRefGoogle Scholar
  15. 15.
    Zhou R, Wei D, Cheng S, Feng W, Du Q, Yang H, Li B, Wang Y, Jia D, Zhou Y. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure. ACS Appl Mater Interfaces. 2014;6:4797–811.CrossRefGoogle Scholar
  16. 16.
    Papalexiou V, Novaes AB, Grisiet MFM, Souza SSLS, Taba M, Kajiwara JK. Influence of implant microstructure on the dynamics of bone healing around immediate implants placed into periodontally infected sites. Clin Oral Impl Res. 2004;15:44–53.CrossRefGoogle Scholar
  17. 17.
    Kwok CT, Wong PK, Cheng FT, Man HC. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl Surf Sci. 2009;255:6736–44.CrossRefGoogle Scholar
  18. 18.
    Assefpour-Dezfuly M, Vlachos C, Andrews EH. Oxide morphology and adhesive bonding on titanium surfaces. J Mater Sci. 1984;19:3626–39.CrossRefGoogle Scholar
  19. 19.
    Zwilling V, Darque‐Ceretti E, Boutry‐Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal. 1999;27:629–37.CrossRefGoogle Scholar
  20. 20.
    Gong DW, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res. 2001;16:3331–4.CrossRefGoogle Scholar
  21. 21.
    Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev. 2014;114:9385–454.CrossRefGoogle Scholar
  22. 22.
    Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.CrossRefGoogle Scholar
  23. 23.
    Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB. Bone structure and formation: a new perspective. Mat Sci Eng R. 2007;58:77–116.CrossRefGoogle Scholar
  24. 24.
    Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev. 2012;64:1257–76.CrossRefGoogle Scholar
  25. 25.
    Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32:9622–9.CrossRefGoogle Scholar
  26. 26.
    Zhang C, Mcadams DA, Grunlan JC. Nano/Micro‐Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures. Adv Mater. 2016;28:6292–321.CrossRefGoogle Scholar
  27. 27.
    Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed. 2011;0:2904–39.CrossRefGoogle Scholar
  28. 28.
    Zhou X, Nguyena NT, Özkan S, Schmuki P. Anodic TiO2 nanotube layers: why does self-organized growth occur—a mini review. Electrochem Commun. 2014;46:157–62.CrossRefGoogle Scholar
  29. 29.
    Yu D, Zhu X, Xu Z, Zhong X, Gui Q, Song Y, Zhang S, Chen X, Li D. Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl Mater Interfaces. 2014;6:8001–5.CrossRefGoogle Scholar
  30. 30.
    Chang C, Huang X, Liu Y, Bai L, Yang X, Hang R, Tang B, Chu PK. High-current anodization: a novel strategy to functionalize titanium-based biomaterials. Electrochim Acta. 2015;173:345–53.CrossRefGoogle Scholar
  31. 31.
    Arifin A, Sulong AB, Muhamad N, Syarif J, Ramli MI. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review. Mater Des. 2014;55:165–75.CrossRefGoogle Scholar
  32. 32.
    Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R. 2004;47:49–121.CrossRefGoogle Scholar
  33. 33.
    Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31:5072–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Meng Zhang
    • 1
  • Xuejiu Wang
    • 2
  • Xiaobo Huang
    • 1
    Email author
  • Yongkang Wang
    • 1
  • Ruiqiang Hang
    • 1
  • Xiangyu Zhang
    • 1
  • Xiaohong Yao
    • 1
  • Bin Tang
    • 1
  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Department of Oral and Maxillofacial Plastic and Trauma SurgeryCapital Medical University School of StomatologyBeijingChina

Personalised recommendations