Advertisement

Sustained release of TGF-β1 via genetically-modified cells induces the chondrogenic differentiation of mesenchymal stem cells encapsulated in alginate sulfate hydrogels

  • Mohammad Askari
  • Shahin Bonakdar
  • Mahdi Habibi Anbouhi
  • Hosein Shahsavarani
  • Saeid Kargozar
  • Vahid KhalajEmail author
  • Mohammad Ali ShokrgozarEmail author
Delivery Systems Original Research
  • 82 Downloads
Part of the following topical collections:
  1. Delivery Systems

Abstract

Strategies based on growth factor (GF) delivery have attracted considerable attention in tissue engineering applications. Among different GFs, transforming growth factor beta 1 (TGF-β1) is considered to be a potent factor for inducing chondrogenesis. In the present study, an expression cassette encoding the TGF-β1 protein was prepared and transfected into the SP2/0-Ag14 cell line. The confocal microscopy of the transfected cells was performed to confirm the correct transfection process. The expression and in vitro release kinetics of the recombinant TGF-β1 were assessed by western blot analysis and ELISA, respectively. Moreover, the biological activity of the expressed protein was compared with that of a commercially available product. The chondrogenic effects of the sustained release of the recombinant TGF-β1 in an in vitro co-culture system were evaluated using a migration assay and real-time PCR. Results of confocal microscopy confirmed the successful transfection of the vector-encoding TGF-β1 protein into the SP2/0-Ag14 cells. The bioactivity of the produced protein was in the range of the commercial product. The sustained release of the TGF-β1 protein via SP2/0-Ag14 cells encapsulated in hydrogels encouraged the migration of adipose-derived MSCs. In addition, the expression analysis of chondrogenesis-related genes revealed that the pretreatment of encapsulated Ad-MSCs cells in alginate sulfate hydrogels through their exposure to the sustained release of TGF-β1 is an efficient approach before transplantation of cells into the body.

Notes

Acknowledgements

This research was generously funded by grants from the National Science Foundation (INSF) through Research Grant No. 92026749 and the Pasteur Institute of Iran.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10856_2018_6203_MOESM1_ESM.png (1.1 mb)
Supplementary Fig. S1
10856_2018_6203_MOESM2_ESM.jpg (366 kb)
Supplementary Fig. S2
10856_2018_6203_MOESM3_ESM.jpg (831 kb)
Supplementary Fig. S3
10856_2018_6203_MOESM4_ESM.png (2.2 mb)
Supplementary Fig. S4

References

  1. 1.
    Moradi L, Vasei M, Dehghan MM, Majidi M, Mohajeri SF, Bonakdar S. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: in vivo study. Biomaterials. 2017;126:18–30.CrossRefGoogle Scholar
  2. 2.
    Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347(3):613–27.CrossRefGoogle Scholar
  3. 3.
    Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv. 2013;31(5):706–21.CrossRefGoogle Scholar
  4. 4.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920.CrossRefGoogle Scholar
  5. 5.
    Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M. Cartilage tissue engineering. In: Camacho-Hübner C, Nilsson O, Sävendahl l, (eds.) Cartilage and bone development and its disorders. Karger Publishers. 2011. p. 102–15.CrossRefGoogle Scholar
  6. 6.
    Lindahl A, Brittiberg M, Gibbs D, Dawson JI, Kanczler J, Black C. et al. Cartilage and bone regeneration. In: De Boer J, Van Blitterswijk C (eds) Tissue engineering. 2nd edn. Amsterdam, Netherland: Elsevier; 2015. p. 529–82.Google Scholar
  7. 7.
    Toh WS, Foldager CB, Pei M, Hui JH. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev Rep. 2014;10(5):686–96.CrossRefGoogle Scholar
  8. 8.
    Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.CrossRefGoogle Scholar
  9. 9.
    Hwang NS, Varghese S, Zhang Z, Elisseeff J. Chondrogenic differentiation of human embryonic stem cell–derived cells in arginine-glycine-aspartate–modified hydrogels. Tissue Eng. 2006;12(9):2695–706.CrossRefGoogle Scholar
  10. 10.
    Yu D-A, Han J, Kim B-S. Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells. 2012;5(1):16 p.CrossRefGoogle Scholar
  11. 11.
    Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Med Hypotheses. 2008;71(6):900–8.CrossRefGoogle Scholar
  12. 12.
    Farajollahi MM, Hamzehlou S, Mehdipour A, Samadikuchaksaraei A. Recombinant proteins: hopes for tissue engineering. BioImpacts. 2012;2(3):123Google Scholar
  13. 13.
    Poniatowski, ŁA, Wojdasiewicz P, Gasik, Szukiewicz D. Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators inflamm. 2015; 137823,  https://doi.org/10.1155/2015/137823.
  14. 14.
    Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 2003;9(4):679–88.CrossRefGoogle Scholar
  15. 15.
    Govinden R, Bhoola K. Genealogy, expression, and cellular function of transforming growth factor-β. Pharmacol Ther. 2003;98(2):257–65.CrossRefGoogle Scholar
  16. 16.
    Sporn MB, Roberts AB, Wakefield LM, Assoian RK. Transforming growth factor-beta: biological function and chemical structure. Science. 1986;233:532–5.CrossRefGoogle Scholar
  17. 17.
    Iwasa K, Reddi AH. Optimization of methods for articular cartilage surface tissue engineering: cell density and transforming growth factor beta are critical for self-assembly and lubricin secretion. Tissue Eng Part C: Methods. 2017;23(7):389–95.CrossRefGoogle Scholar
  18. 18.
    Albro MB, Nims RJ, Durney KM, Cigan AD, Shim JJ, Vunjak-Novakovic G. et al. Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-β and is ameliorated by the alternative supplementation of latent TGF-β. Biomaterials. 2016;77:173–85.CrossRefGoogle Scholar
  19. 19.
    Kim J, Lin B, Kim S, Choi B, Evseenko D, Lee M. TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. J Biol Eng. 2015;9(1):1CrossRefGoogle Scholar
  20. 20.
    Yin F, Cai J, Zen W, Wei Y, Zhou W, Yuan F. et al. Cartilage regeneration of adipose-derived stem cells in the TGF-β1-immobilized PLGA-gelatin scaffold. Stem Cell Rev Rep. 2015;11(3):453–9.CrossRefGoogle Scholar
  21. 21.
    Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H. et al. Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials. 2004;25(18):4163–73.CrossRefGoogle Scholar
  22. 22.
    DeFail AJ, Chu CR, Izzo N, Marra KG. Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels. Biomaterials. 2006;27(8):1579–85.CrossRefGoogle Scholar
  23. 23.
    Saraf A, Mikos AG. Gene delivery strategies for cartilage tissue engineering. Adv Drug Deliv Rev. 2006;58(4):592–603.CrossRefGoogle Scholar
  24. 24.
    Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL. et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater. 2016;45:234–46.CrossRefGoogle Scholar
  25. 25.
    Diekman BO, Christoforou N, Willard VP, Sun H, Sanchez-Adams J, Leong KW. et al. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109(47):19172–7.CrossRefGoogle Scholar
  26. 26.
    Kargozar S, Mozafari M, Hashemian SJ, Brouki Milan P, Hamzehlou S, Soleimani M. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: a comparative study between human mesenchymal stem cells derived from bone, umbilical cord Whartonas jelly, and adipose tissue. J Biomed Mater Res B Appl Biomater. 2016;106(1):61–72.CrossRefGoogle Scholar
  27. 27.
    Wilson A, Butler P, Seifalian A. Adipose‐derived stem cells for clinical applications: a review. Cell Prolif. 2011;44(1):86–98.CrossRefGoogle Scholar
  28. 28.
    Lanza R, Langer R, Vacanti J. Principles of tissue engineering. 2011. 4th Edn, Academic press: Massachusetts, USA, 1936 pp.Google Scholar
  29. 29.
    Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.CrossRefGoogle Scholar
  30. 30.
    Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going?. J Funct Biomater. 2018;9(1):25.CrossRefGoogle Scholar
  31. 31.
    Knappskog S, Ravneberg H, Gjerdrum C, Trösse C, Stern B, Pryme IF. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol. 2007;128(4):705–15.CrossRefGoogle Scholar
  32. 32.
    Oosterlynck DJ, Meuleman C, Waer M, Koninckx PR. Transforming growth factor-beta activity is increased in peritoneal fluid from women with endometriosis. Obstet Gynecol. 1994;83(2):287–92.Google Scholar
  33. 33.
    Babavalian H, Latifi AM, Shokrgozar MA, Bonakdar S, Mohammadi S, Moosazadeh Moghaddam M. Analysis of healing effect of alginate sulfate hydrogel dressing containing antimicrobial peptide on wound infection caused by methicillin-resistant Staphylococcus aureus. Jundishapur J Microbiol. 2015;8(9):e28320  https://doi.org/10.5812/jjm.28320.CrossRefGoogle Scholar
  34. 34.
    Mhanna R, Mhanna R1, Kashyap A, Palazzolo G, Vallmajo-Martin Q, Becher J, Möller S. et al. Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers. Tissue Eng Part A. 2014;20(9-10):1454–64.CrossRefGoogle Scholar
  35. 35.
    Zou Z, Sun PD. Overexpression of human transforming growth factor-β1 using a recombinant CHO cell expression system. Protein Expr Purif. 2004;37(2):265–72.CrossRefGoogle Scholar
  36. 36.
    Brownh PD, Wakefield LM, Levinson AD, Sporn MB. Physicochemical activation of recombinant latent transforming growth factor-beta’s 1, 2, and 3. Growth Factors. 1990;3(1):35–43.p.CrossRefGoogle Scholar
  37. 37.
    Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi-Wong M. Alginate sulfate—nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng. 2017;45(1):210–23.CrossRefGoogle Scholar
  38. 38.
    Re’em T, Kaminer-Israeli Y, Ruvinov E, Cohen S. Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials. 2012;33(3):751–61.CrossRefGoogle Scholar
  39. 39.
    Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27(1):91–99.CrossRefGoogle Scholar
  40. 40.
    Cao X, Deng W, Wei Y, Yang Y, Su W, Wei Y. et al. Incorporating pTGF-beta1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: efficient, sustained gene delivery to stem cells for chondrogenic differentiation. Eur Cell Mater. 2012;23:81–93.CrossRefGoogle Scholar
  41. 41.
    Guan J-L. Cell migration: developmental methods and protocols. 294. 2005. Springer Science & Business Media.Google Scholar
  42. 42.
    Mehlhorn AT, Niemeyer P, Kaiser S, Finkenzeller G, Stark GB, Südkamp NP, Schmal H. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 2006;12(10):2853–62.CrossRefGoogle Scholar
  43. 43.
    Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG. et al. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials. 2007;28(21):3217–27.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Askari
    • 1
  • Shahin Bonakdar
    • 1
  • Mahdi Habibi Anbouhi
    • 1
  • Hosein Shahsavarani
    • 2
    • 3
  • Saeid Kargozar
    • 4
  • Vahid Khalaj
    • 5
    Email author
  • Mohammad Ali Shokrgozar
    • 1
    Email author
  1. 1.National Cell Bank DepartmentPasteur Institute of IranTehranIran
  2. 2.Laboratory of Regenerative Medicine and Biomedical InnovationsPasteur Institute of IranTehranIran
  3. 3.Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
  4. 4.Department of Modern Sciences and Technologies, School of MedicineMashhad University of Medical SciencesMashhadIran
  5. 5.Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran

Personalised recommendations