Springer Nature is making SARS-CoV-2 and COVID-19 research free View research | View latest news | Sign up for updates

Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique

  • 3 Accesses

Abstract

The sol–gel technique was utilized to synthesize α-Fe2O3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were investigated by scanning and transmission electron microscopy (SEM and TEM) analysis and X-ray diffraction (XRD).The average crystallite size estimated by sherrer’s equation was 60 nm. TEM images show that the obtained powder is composed of agglomeration of irregular shaped (between oval and spherical) grains. The prepared nanomaterial was used as sensing layer in gas sensing device. The sensor has been tested towards low concentrations in air of NO2 at different temperatures from 200 to 350 °C. We noticed that 225 °C was the best operating temperature. At this temperature, the obtained results indicated that the realized sensor has a high response towards 1 ppm of NO2 gas. The response and recovery times are 26 and 48 s, respectively. To show the selectivity of the sensor, we have tested it with different gases such as CO, CO2, and NH3. We found that hematite sensor exhibits high selectivity towards NO2 gas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    N.L. Satyanarayana, K. Madhusudan Reddy, S.V. Manorama, Mater. Chem. Phys. 82:21–26 (2003)

  2. 2.

    N. Imanaka, K. Okamoto, G. Adachi, Mater. Lett. 57, 1966–1969 (2003)

  3. 3.

    V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Sens. Actuators B 239, 1185–1193 (2017)

  4. 4.

    M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, J. Phys. Chem. C 115, 12763–12773 (2011)

  5. 5.

    N. Haidry, B. Kind, J. Saruhan, Sens. Sens. Syst. 4, 271–280 (2015)

  6. 6.

    T. Hyodo, K. Urata, K. Kamada, T. Ueda, Y. Shimizu, Sens. Actuators B 253, 630–640 (2017)

  7. 7.

    N.G. Cho, D.J. Yang, M.J. Jin, H.G. Kim, H.L. Tuller, I.D. Kim, Sens. Actuators B 160, 1468–1472 (2011)

  8. 8.

    E. Zampetti, S. Pantalei, A. Muzyczuk, A. Bearzotti, F. De Cesare, C. Spinella, A. Macagnano, Sens. Actuators B 176, 390–398 (2013)

  9. 9.

    L. Sun, A.A. Haidry, Q. Fatima, Z. Li, Z. Yao, Mater. Res. Bull. 99, 124–131 (2018)

  10. 10.

    S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Ceram. Int. 40, 8013–8020 (2014)

  11. 11.

    B. Mirzaei, K.J. Hashemi, J. Mater. Sci 27, 3109–3144 (2016)

  12. 12.

    M. Hjiri, M.S. Aida, G. Neri, Sens. 19, 167 (2019)

  13. 13.

    S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, P.S. Patil, Sens. Actuators B 240, 426–433 (2017)

  14. 14.

    B. Urasinska-Wojcik, T.A. Vincent, M.F. Chowdhury, J.W. Gardner, Sens. Actuators B 239, 1051–1059 (2017)

  15. 15.

    Y.L. Liu, Z.M. Liu, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu, Sens. Actuators B 107, 600–604 (2005)

  16. 16.

    N.S. Chen, X.J. Yang, E.S. Liu, J.L. Huang, Sens. Actuators B 66, 178–180 (2000)

  17. 17.

    V. Balouria, A. Kumar, S. Samanta, A. Singha, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Sens. Actuators B 181, 471–478 (2013)

  18. 18.

    M.S. Lassouad, B. Lassouad, S. Dkhil, Ammar. Physics E 101, 212–219 (2018)

  19. 19.

    J.R. Zhang, L. Gao, Mater. Chem. Phys. 87, 10–13 (2004)

  20. 20.

    B. Lassoued, A. Dkhil, S. Gadri, Ammar. Res. Phys. 7, 3007–3015 (2017)

  21. 21.

    L.E. Mathevula, L.L. Noto, B.M. Mothudi, M.S. Dhlamini, Physics B 535, 258–261 (2018)

  22. 22.

    O.M. Lemine, I. Ghiloufi, M. Boudina, L. Khezami, M. Ould’Mhamed, T. Hassan, J. Alloys Compds 588:592–595 (2014).

  23. 23.

    S.T. Navale, D.K. Bandgar, S.R. Nalage, G.D. Khuspe, M.A. Chougule, Y.D. Kolekar, S. Sen, V.B. Patil, Ceram. Int. 39(6), 6453–6460 (2013)

  24. 24.

    R. Pandeeswari, R.K. Karn, B.G. Jeyaprakash, Sens. Actuators B 194, 470–477 (2014)

  25. 25.

    Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang, B. Zhu, S. Wang, S. Wu, Sens. Actuators B 131, 183–189 (2008)

  26. 26.

    R.C. Biswal, Sens. Actuators B 157, 183–188 (2011)

  27. 27.

    S.Y. Wang, W. Wang, W.Z. Wang, Z. Jiao, J.H. Liu, Y.T. Qian, Sens Actuators B 69, 22–27 (2000)

  28. 28.

    E.T. Lee, G.E. Jang, C.K. Kim, D.H. Yoon, Sens. Actuators B 77, 221–227 (2001)

  29. 29.

    Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, T. Wang, Mater. Sci. Eng. B 176, 600–605 (2011)

  30. 30.

    G. Korotcenkov, V. Brinzari, J. Schwank, M. DiBattista, A. Vasiliev, Sens. Actuators B 77, 244–252 (2001)

  31. 31.

    B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, .B. Patil, J. Mater. Sci. 23:956–963 (2012).

  32. 32.

    L.E. Mathevulaa, L.L. Notoa, B.M. Mothudia, M. Chithambo, M.S. Dhlamini, J. Lumin. 192, 879–887 (2017)

  33. 33.

    B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley, Reading, MA, 1978), p. 102

  34. 34.

    P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, M.J. Sridharan, Phys. Chem. Solids 112, 127–136 (2018)

  35. 35.

    W.X. Jin, S.Y. Ma, Z.Z. Tie, X.H. Jiang, W.Q. Li, J. Luo, X.L. Xu, T.T. Wang, Sens. Actuators B 220, 243–254 (2015)

  36. 36.

    Q.Z. Zeng, S.Y. Ma, W.X. Jin, H.M. Yang, H. Chen, Q. Ge, L. Ma, J. Alloy. Compd. 705, 427–437 (2017)

  37. 37.

    C.M. Hung, N.D. Hoa, N.V. Duy, N.V. Toan, D.T. Le, N.V. Hieu, J. Sci. Adv. Mater. Devices 1, 45–50 (2016)

  38. 38.

    M. Srivastava, A.K. Ojha, S. Chaubey, J. Singh, P.K. Sharma, A.C. Pandey, J. Alloys Compds 500, 206–210 (2010)

  39. 39.

    M.A. Chougule, S. Sen, V.B. Patil, Ceram. Int. 38, 2685–2692 (2012)

  40. 40.

    H. Xia, Y. Wu, F. Kong, S. Wang, B. Zhu, X. Guo, J. Zhang, Y. Wang, S. Wu, Sens. Actuators B 134, 133–139 (2008)

  41. 41.

    M. Li, M. Hu, Q. Liu, S. Ma, P. Sun, Appl. Surface Sci. 268, 188–194 (2013)

  42. 42.

    S.T. Navale, D.K. Bandgar, S.R. Nalage, G.D. Khuspe, M.A. Chegoule, Y.D. Kolekar, S. Sen, V.B. Patil, Ceram. Int. 39, 6453–6460 (2013)

  43. 43.

    M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuators B 196, 413–420 (2014)

  44. 44.

    R.K. Sonker, B.C. Yadav, J. Taiwan Inst. Chem. Eng. 77, 276–281 (2017)

  45. 45.

    S.T. Navale, G.D. Khupse, M.A. Chegoule, V.B. Patil, Ceram. Int. 40, 8013–8020 (2014)

  46. 46.

    R.A. Wu, C.W. Lin, W.J. Tseng, Ceram. Int. 43, S535–S540 (2017)

Download references

Author information

Correspondence to M. Hjiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hjiri, M. Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03069-4

Download citation