Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Judd–Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses

  • 14 Accesses

Abstract

Erbium doped 50SiO2 -30Li2O- 1Gd2O3- (19 − x) CdO and x Er2O3 glass system, where (0 ≤ x ≥ 2.5), mol%, has been prepared by the conventional melt quenching technique. The physical, structural and optical properties are explained by analyzing the data obtained from X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV–Visible (UV–Vis-NIR) and photoluminescence results. X-ray powder diffraction patterns show broad peaks which conform glassy nature of the sample. FTIR spectroscopy reveals the presence of SiO4, CdO4 and Er–O vibration groups in the glass samples. The optical absorption spectra in the wavelength range of 200–2500 nm were measured and the optical band gaps, Urbach energy, Electronegativity (χ) Electron Polarizability (α°), and Optical basicity (˄) were determined. The optical absorption spectra of Er3+ ions in these glasses show eleven bands and are assigned to the transitions from ground state to excited levels. It was found that the optical band gap increases from 3.19 to 3.51 eV with the increase in Er2O3 concentration. The strong sharp peak belongs to Er+3 emission is investigated in photoluminescence spectra at ordinary condition (1 atm. and at room temperature). It excites by wavelength of 385 nm and gives pale green color at 559 nm. Judd–Ofelt theory has been used to analyze the spectra arising from erbium ions doped 50 SiO2 -30 Li2O- 1Gd2O3- (19 − x) CdO and x Er2O3. The intensity parameters Ω2,4,6 of the present complex and lifetimes of selected levels are theoretically calculated as well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    S.N. Nazrin, M.K. Halimah, F.D. Muhammad, Comparison study of optical properties on erbium-doped and silver doped zinc tellurite glass system for non-linear application. J. Mater. Sci. 30, 6378 (2019)

  2. 2.

    M.N. Azlan, M.K. Halimah, H.A.A. Sidek, Linear and nonlinear optical properties of erbium doped zinc borotellurite glass system. J. Lumin. 181, 400–406 (2017)

  3. 3.

    Y. Nageno, H. Takebe, K. Morinaga, Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses. J. Am. Ceram. Soc. 76, 3081–3086 (1993)

  4. 4.

    A.R. Devi, C.K. Jayasankar, Optical properties of Nd3+ ions in lithium borate glasses. Mater. Chem. Phys. 42, 106–119 (1995)

  5. 5.

    V. Mehta, G. Aka, A.L. Dawar, A. Mansingh, Optical properties and spectroscopic parameters of Nd3+ doped phosphate and borate glasses. Opt. Mater. (Amsterdam) 12, 53–63 (1999)

  6. 6.

    E. Pecoraro, J.A. Sampaio, L.A.O. Nunes, S. Gama, M.L. Baesso, Spectroscopic properties of water free Nd2O3-doped low silica calcium aluminosilicate glasses. J. Non Cryst. Solids 277, 73–81 (2000)

  7. 7.

    E. Snitzer, R. Woodcock, Yb3+–Er3+ Glass laser. Appl. Phys. Lett. 6(3), 45–46 (1965)

  8. 8.

    B. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 465(127), 750–761 (1962)

  9. 9.

    G. Ofelt, Intensities of crystal spectra of rare earth ions. J. Chem. Phys. 37, 511–520 (1962)

  10. 10.

    H. Lihui, L. Xingren, X. Wu, C. Baojiu, L. Jiuling, Infrared and visible luminescence properties of Er3+ and Yb3+ ions codoped Ca3Al2Ge3O12 glass under 978 nm diode laser excitation. J. Appl. Phys. 90(11), 5550–5553 (2001)

  11. 11.

    E.S. Yousef, M.M. Elokr, Y.M. AbouDeif, Optical, elastic properties and DTA of TNZP host tellurite glasses doped with Er 3+ ions. J. Mol. Struct. 1108, 257–262 (2016)

  12. 12.

    E.S. Yousef, H.H. Hegazy, S. Almojadah, M. Reben, Absorption spectra and Raman gain coefficient in near-IR region of Er3+ ions doped TeO2 –Nb2O5 –Bi2O3 –ZnO glasses. Opt. Laser Technol. 74, 138–144 (2015)

  13. 13.

    S. Mohan, K.S. Thind, D. Singh, L. Gerward, Optical properties of alkali and alkaline-earth lead borate glasses doped with Nd3+ Ions. Glass Phys. Chem. 34(3), 265–273 (2008)

  14. 14.

    S.O. Baki, L.S. Tan, C.S. Kan, H.M. Kamari, A.S.M. Noor, M.A. Mahdi, Structural and optical properties of Er3+-Yb3+ co-doped multi-composition TeO2-ZnO-PbO-TiO2-Na2O glass. J. Non Cryst. Solids 362, 156–161 (2013)

  15. 15.

    S.N. Nazrin, M.K. Halimah, F.D. Muhammad, J.S. Yip, L. Hasnimulyati, M.F. Faznny, I. Zaitizila, The effect of erbium oxide in physical and structural properties of zinc tellurite glass system. J. Non Cryst. Solids 490, 35–43 (2018)

  16. 16.

    N. Chiodini, A. Paleari, G. Brambilla, E.R. Taylor, Erbium doped nanostructured tin- silicate glass-ceramic composites. Appl. Phys. Lett. 80, 4449–4451 (2002)

  17. 17.

    D. Jaque, J. Capmany, F. Molero, Z.D. Luo, J.G. Sole, Upconversion luminescence in the Nd3+: YAB self-frequency doubling laser crystal. Opt. Mater. 10, 211–217 (1998)

  18. 18.

    H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, E. Yue-Bun Pun, Optical transitions and visible upconversion in Er3+-doped niobic tellurite glass. J. Appl. Phys. 93, 186–191 (2003)

  19. 19.

    P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A.K. Dharmadhikari, J.A. Dharmadhikari, D. Mathur, Femtosecond laser written channel waveguides in tellurite glass. Opt. Exp. 14, 12145–12150 (2006)

  20. 20.

    A. Amarnath Reddy, S. Surendra Babu, G. Vijaya Prakash, Er3+ -doped phosphate glasses with improved gain characteristics for broadband optical amplifiers. Opt. Comm. 285, 5364–5367 (2012)

  21. 21.

    H. Berthou, C.K. Jorgensen, Optical fiber temperature sensor based on upconversion-excited fluorescence. Opt. Lett. 15, 1100 (1990)

  22. 22.

    J.F. Phillipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses. Appl. Phys. B 72, 399–405 (2001)

  23. 23.

    P. Haro-Gonzalez, I.R. Martin, L.L. Martin, S.F. Leon-Luis, C. Perez-Rodriguez, V. Lavin, Characterization of Er3+ and Nd3+ doped strontium barium niobate glass ceramic as temperature sensors. Opt. Mater. 33, 742–745 (2011)

  24. 24.

    J.A. Hutchinson, T.H. Allik, Diode array pumped Er, Yb: phosphate glass laser. Appl. Phys. Lett. 60, 1424–1426 (1992)

  25. 25.

    H. Lin, E.Y.B. Pun, X.R. Liu, Er3+-doped Na2O·Cd3Al2Si3O12 glass for infrared and upconversion applications. J. Non Cryst. Solids 283(1–3), 27–33 (2001)

  26. 26.

    H. Wilke, Organische oberflächenemittierende Laser mit vertikaler Kavität ., PhD, Institute of Nanostructure Technologies and Analytics (INA), Kassel, Germany, (2019)

  27. 27.

    N. Effendy, Z.A. Wahab, S. Abdul Aziz, K.A. Matori, M.H.M. Zaid, S.S.A. Rashid, Characterization and optical properties of erbium oxide doped ZnO–SLS glass for potential optical and optoelectronic materials. Mater. Express 7(1), 59–65 (2017)

  28. 28.

    E.M.A. Khalil, F.H. Elbatal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, Infrared absorption spectra of transition metals-doped soda lime silica glasses. Phys B 405(5), 1294–1300 (2010)

  29. 29.

    J. Wong, C.A. Angell, Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976)

  30. 30.

    K.H.S. Shaaban, Y. Saddeek, K. Aly, Physical properties of pseudo quaternary Na2B4O7 –SiO2 –MoO3 –Dy2O3 glasses. Ceram. Int. 44, 3862–3867 (2018)

  31. 31.

    A.A. El-Maaref, K.H.S. Shaaban, M. Abdelawwad, Y.B. Saddeek, Optical characterizations and Judd-Ofelt analysis of Dy 3+ doped borosilicate glasses. Opt. Mater. 72, 169–176 (2017)

  32. 32.

    K.S. Shaaban, W.M. Abd-Allah, Y.B. Saddeek, Opt. Quant. Electron 52, 3 (2020). https://doi.org/10.1007/s11082-019-2094-3

  33. 33.

    H. Darwish, S. Ibrahim, M.M. Gomaa, Electrical and physical properties of Na2O–CaO–MgO–SiO2 glass doped with NdF3. J. Mater. Sci. 24(3), 1028–1036 (2012)

  34. 34.

    T.G.V.M. Rao, A. Rupesh Kumar, C. Kalyan Chakravarthi, M. Rami Reddy, N. Veeraiah, Spectroscopical splitting of Cu ion energy levels in magnesium lead fluoro silicate glasses. Phys B 407(4), 593–597 (2012)

  35. 35.

    A.M. Efimov, Vibrational spectra, related properties, and structure of inorganic glasses. J. Non-Cryst. Solids 253(1–3), 95–118 (1999)

  36. 36.

    K.S. Shaaban, Y.B. Saddeek, Effect of MoO3 Content on structural, thermal, mechanical and optical properties of (B2O3-SiO2-Bi2O3-Na2O-Fe2O3) glass system. Silicon 9(5), 785–793 (2017)

  37. 37.

    M. Imaoka, H. Hasegawa, I. Yasui, X-ray diffraction analysis on the structure of the glasses in the system PbO-SiO2. J. Non-Cryst. Solids 85(3), 393–412 (1986)

  38. 38.

    H. Dunken, R.H. Doremus, Short time reactions of a Na2O-CaO-SiO2 glass with water and salt solutions. J. Non-Cryst. Solids 92(1), 61–72 (1987)

  39. 39.

    E.M.A. Khalil, F.H. El-Batal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, UV-visible and IR spectroscopic studies of gamma irradiated transition metal doped lead silicate glasses. Silicon 2(1), 49–60 (2010)

  40. 40.

    G. Navarra, I. Iliopoulos, V. Militello, S.G. Rotolo, M. Leone, OH-related infrared absorption bands in oxide glasses. J. Non-Cryst. Solids 351(21–23), 1796–1800 (2005)

  41. 41.

    G. Navarra, R. Boscaino, M. Leone, B. Boizot, Irradiation effects on the OH-related infrared absorption band in synthetic wet silica. J. Non-Cryst. Solids 353(5–7), 555–558 (2007)

  42. 42.

    K.S. Shaaban, A.A. El-Maaref, M. Abdelawwad, Y.B. Saddeek, H. Wilke, H. Hillmer, Spectroscopic properties and Judd-Ofelt analysis of Dy3+ ions in molybdenum borosilicate glasses. J. Lumin. 196, 477–484 (2018)

  43. 43.

    J.R. Ferraro, M.H. Manghnani, Infrared absorption spectra of sodium silicate glasses at high pressures. J. Appl. Phys. 43(11), 4595–4599 (1972)

  44. 44.

    M.T. Wang, J.Z. Cheng, M. Li, F. He, Structure and properties of soda lime silicate glass doped with rare earth. Phys B 406, 187–191 (2011)

  45. 45.

    M.N. Azlan, M.K. Halimah, A.B. Suriani, Y. Azlina, R. El-Mallawany, Electronic polarizability and third-order nonlinearity of Nd3+ doped borotellurite glass for potential optical fiber. Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.12181

  46. 46.

    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79(3), 1736–1740 (1996)

  47. 47.

    V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid-State Chem. 163(1), 100–112 (2002)

  48. 48.

    L. Singh, V. Thakur, R. Punia, R.S. Kundu, A. Singh, Structural and optical properties of barium titanate modified bismuth borate glasses. Solid State Sci 37, 64–71 (2014)

  49. 49.

    F. El-Diasty, F.A. Abdel Wahab, M. Abdel-Baki, Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions. J. Appl. Phys. 100(9), 093511 (2006)

  50. 50.

    D. Sushama, P. Predeep, Thermal and optical studies of rare earth doped tungsten–tellurite glasses. Int. J. Appl. Phys. Math. 4, 139–143 (2014)

  51. 51.

    J. Tauc, Electronic properties of amorphous materials. Science 158, 1543–1548 (1967)

  52. 52.

    E.A.A. Wahab, K.S. Shaaban, Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater. Res. Express 5(2), 025207 (2018)

  53. 53.

    A.M. Emara, E.S. Yousef, Structural and optical properties of phosphate-zinc-nickel oxide glasses for narrow band pass absorption filters. J. Mod. Opt. 65(15), 1839–1845 (2018)

  54. 54.

    S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J. Non-Cryst. Solids 512, 60 (2019)

  55. 55.

    T.Q. Khanh, P. Bodrogi, Q.T. Vinh, Color Quality of Semiconductor and Conventional Light Sources (Wiley-VCH, Weinheim, 2017)

  56. 56.

    N. Kaur, A. Khanna, M. Gónzález-Barriuso, F. González, B. Chen, J. Non-Cryst. Solids 429, 153 (2015)

  57. 57.

    N. Elkhoshkhany, R. Abbas, R. El-Mallawany, S.F. Hathot, Optical properties and crystallization of bismuth boro-tellurite glasses. J. Non-Cryst. Solids 476, 15–24 (2017)

  58. 58.

    M. Farouk, A. Samir, F. Metawe, M. Elokr, Optical absorption and structural studies of bismuth borate glasses containing Er3+ ions. J. Non-Cryst. Solids 371–372, 14–21 (2013)

  59. 59.

    N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40(9), 14477–14481 (2014)

  60. 60.

    Swapna K., Mahamuda SK., Venkateswarlu M., Srinivasa Rao A., Jayasimhadri M., Suman Shakya, Vijaya Prakash G. (2015) Visible, up-conversion and NIR (1.5 μm) luminescence studies of Er3+ doped zinc alumino bismuth borate glasses. J. Lumin. 163, 55–63.

  61. 61.

    T. L. Cottrell, The Strengths of Chemical Bonds, 2d ed., (Butterworth, London, 1958) B. deB.

  62. 62.

    Y. Fang, Hu Lili, L. Wen, M. Liao, Judd-Ofelt intensity parameters of Er3+ doped mixed alkali aluminophosphate glasses. J. Alloys Compd. 431, 246–249 (2007)

  63. 63.

    G.N. Hemantha, Kumar, J.L. Rao, K. Ravindra Prasad, Y. C. Ratnakaram, J. Alloys Compd. 480, 208–215, (2009)

  64. 64.

    Y.C. Ratnakaram, N. V. Srihari, A. Kumar Vijaya, D. Thirupathi Naidu, R.P.S. Chakradhar, Optical absorption and photoluminescence properties of Nd3+ doped mixed alkali phosphate glasses-spectroscopic investigations, Spectrochim. Acta Part A 72, 171–177, (2009)

Download references

Acknowledgements

The authors are grateful to Al-Azhar University for supporting with the experimental measurements. In addition, the authors thank the Deanship of Scientific Research at King Khalid University (KKU) for funding this research project, Number: (R.G.P2./22/40) under research center for advanced material science.

Author information

Correspondence to Kh.S. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K., Abdel Wahab, E.A., El-Maaref, A.A. et al. Judd–Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03065-8

Download citation