Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Photoresponse properties and energy gap of CsPbBr3–CsPb2Br5 compound thin film prepared by one-step thermal evaporation method

  • 8 Accesses

Abstract

We proposed the preparation of the compound thin film of CsPb2Br5 and CsPbBr3 perovskites via thermal evaporation method with post-annealing. The optical absorption, energy gap, and photoresponse properties of the compound thin films were investigated. Over 90% transmittance in visible region of 550–700 nm was obtained, and the energy gap of thin film was found to be in the range of 2.28–2.35 eV. Using 405 nm laser, the compound thin film showed obvious response dependence on light power. Even if the large conductive channel of 1 mm × 100 μm was used, thin film possessed still good cycle characteristics, available responsivity, and a rapid response at applying 5 V.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, S.F. Liu, All-ambient processed binary CsPbBr3-CsPb2Br5 perovskites with synergistic enhancement for high-efficiency Cs-Pb-Br-based solar cells. ACS Appl. Mater. Interfaces 10, 7145–7154 (2018)

  2. 2.

    P. Song, B. Qiao, D. Song, Z. Liang, D. Gao, J. Cao, Z. Shen, Z. Xu, S. Zhao, Colour- and structure-stable CsPbBr3-CsPb2Br5 compounded quantum dots with tuneable blue and green light emission. J. Alloys Compd. 767, 98–105 (2018)

  3. 3.

    L. Ruan, W. Shen, A. Wang, A. Xiang, Z. Deng, Alkyl-Thiol Ligand-Induced Shape-and crystalline phase-controlled synthesis of stable Perovskite-related CsPb2Br5 nanocrystals at room temperature. J. Phys. Chem. Lett. 8, 3853–3860 (2017)

  4. 4.

    B.-S. Zhu, H.-Z. Li, J. Ge, H.-D. Li, Y.-C. Yin, K.-H. Wang, C. Chen, J.-S. Yao, Q. Zhang, H.-B. Yao, Room temperature precipitated dual phase CsPbBr3–CsPb2Br5 nanocrystals for stable perovskite light emitting diodes. Nanoscale 10, 19262–19271 (2018)

  5. 5.

    P. Li, Y. Cheng, L. Zhou, X. Yu, J. Jiang, M. He, X. Liang, W. Xiang, Photoluminescence properties and device application of CsPb2Br5 quantum dots in glasses. Mater. Res. Bull. 105, 63–67 (2018)

  6. 6.

    X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang, X.W. Sun, All-inorganic Perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 26, 4595–4600 (2016)

  7. 7.

    W. Shen, L. Ruan, Z. Shen, Z. Deng, Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets. Chem. Commun. 54, 2804–2807 (2018)

  8. 8.

    B. Qiao, P. Song, J. Cao, S. Zhao, Z. Shen, D. Gao, Z. Liang, Z. Xu, D. Song, X. Xu, Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell like structure lead halide perovskite nanocrystals. Nanotechnology 28, 445602 (2017)

  9. 9.

    G. Jiang, C. Guhrenz, A. Kirch, L. Sonntag, C. Bauer, X. Fan, J. Wang, S. Reineke, N. Gaponik, A. Eychmüller, Highly luminescent and water-resistant CsPbBr3-CsPb2Br5 Perovskite nanocrystals coordinated with partially hydrolyzed poly(methyl methacrylate) and polyethyleneimine. ACS Nano 13, 10386–10396 (2019)

  10. 10.

    S.K. Balakrishnan, P.V. Kamat, Ligand assisted transformation of cubic CsPbBr3 nanocrystals into two-dimensional CsPb2Br5 nanosheets. Chem. Mater. 30, 74–78 (2018)

  11. 11.

    S. Lou, Z. Zhou, T. Xuan, H. Li, J. Jiao, H. Zhang, R. Gautier, J. Wang, Chemical transformation of lead halide Perovskite into insoluble, less cytotoxic, and brightly luminescent CsPbBr3/CsPb2Br5 composite nanocrystals for cell imaging. ACS Appl. Mater. Interfaces 11, 24241–24246 (2019)

  12. 12.

    F. Palazon, S. Dogan, S. Marras, F. Locardi, I. Nelli, P. Rastogi, M. Ferretti, M. Prato, R. Krahne, L. Manna, From CsPbBr3 nano-inks to sintered CsPbBr3-CsPb2Br5 films via thermal annealing: implications on optoelectronic properties. J. Phys. Chem. C 121, 11956–11961 (2017)

  13. 13.

    G. Tong, H. Li, D. Li, Z. Zhu, E. Xu, G. Li, L. Yu, J. Xu, Y. Jiang, Dual-phase CsPbBr3-CsPb2Br5 Perovskite thin films via vapor deposition for high-performance rigid and flexible photodetectors. Small 14, 1702523 (2018)

  14. 14.

    P. Acharyya, P. Pal, P.K. Samanta, A. Sarkar, S.K. Pati, K. Biswas, Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties. Nanoscale 11, 4001–4007 (2019)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61675147, 61605141, 61735010, and 91838301), National Key Research and Development Program of China (No. 2017YFA0700202), Basic Research Program of Shenzhen (JCYJ20170412154447469), and Beiyang Young Junior Faculties of Tianjin University (No. 2019XRG-0056).

Author information

Correspondence to Yating Zhang or Jianquan Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2272 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, H., Li, J. et al. Photoresponse properties and energy gap of CsPbBr3–CsPb2Br5 compound thin film prepared by one-step thermal evaporation method. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03062-x

Download citation