Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

CdS-decorated surface-coarsened TiO2 nanobelts with enhanced visible-light photocatalytic performances

  • 15 Accesses

Abstract

Photodegradation of pollutants and photocatalytic hydrogen evolution of water splitting have been regarded as effective paths to solve the global environmental pollution and energy shortage. Herein, CdS-decorated surface-coarsened TiO2 nanobelts were fabricated by in-situ-deposited CdS on the surface-coarsened TiO2 nanobelts prepared by hydrothermal procedure followed by acid etched, and the visible-light photocatalytic performances were investigated. The as-synthesized composites presented multi-crystalline phase heterostructure with the specific surface of 64.368 m2 g−1 and the band gap of 2.22 eV. Owing to the synergic effect between CdS and surface-coarsened TiO2 nanobelts with multi-crystalline phase self-transformed heterostructure, the prepared composites showed effective separation of photogenerated carriers and excellent visible-light photocatalytic performances. Under visible-light irradiation, the degradation efficiency of methylene blue reached 99.7% with the photodegradation rate constant of 0.0231 min−1, and the average H2 evolution rate was 0.6225 mmol g−1 h−1 over 6 h. The visible-light photocatalytic activities of the as-prepared composites were greatly enhanced compared to CdS and CdS-decorated TiO2 nanobelts. The possible photodegradation mechanism was provided by investigating the active species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

References

  1. 1.

    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919–9986 (2014)

  2. 2.

    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211–13241 (2011)

  3. 3.

    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

  4. 4.

    J. Tian, P. Hao, N. Wei, H. Cui, H. Liu, ACS Catal. 5, 4530–4536 (2015)

  5. 5.

    S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.I. Lee, Chem. Mater. 15, 3326–3331 (2003)

  6. 6.

    H.B. Wu, H.H. Hng, X.W. Lou, Adv. Mater. 24, 2567–2571 (2012)

  7. 7.

    P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904–2939 (2011)

  8. 8.

    N. Wu, J. Wang, D.N. Tafen, H. Wang, J.-G. Zheng, J.P. Lewis, X. Liu, S.S. Leonard, A. Manivannan, J. Am. Chem. Soc. 132, 6679–6685 (2010)

  9. 9.

    J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114, 13118–13125 (2010)

  10. 10.

    X. Zhang, Y. Wang, B. Liu, Y. Sang, H. Liu, Appl. Catal. B 202, 620–641 (2017)

  11. 11.

    J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Chem. Soc. Rev. 43, 6920–6937 (2014)

  12. 12.

    R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Phys. Rev. B 61, 7459–7465 (2000)

  13. 13.

    Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N. Wang, C. Hu, X. Tao, J. Jiao, J. Wang, Z.L. Wang, Adv. Funct. Mater. 18, 1131–1137 (2008)

  14. 14.

    J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, J. Am. Chem. Soc. 131, 12290–12297 (2009)

  15. 15.

    W. Zhou, G. Du, P. Hu, G. Li, D. Wang, H. Liu, J. Wang, R.I. Boughton, D. Liu, H. Jiang, J. Mater. Chem. 21, 7937–7945 (2011)

  16. 16.

    W. Zhou, L. Gai, P. Hu, J. Cui, X. Liu, D. Wang, G. Li, H. Jiang, D. Liu, H. Liu, J. Wang, CrystEngComm 13, 6643–6649 (2011)

  17. 17.

    G. Yang, D. Chen, H. Ding, J. Feng, J.Z. Zhang, Y. Zhu, S. Hamid, D.W. Bahnemann, Appl. Catal. B 219, 611–619 (2017)

  18. 18.

    M. Zhou, J. Yu, S. Liu, P. Zhai, L. Jiang, J. Hazard. Mater. 154, 1141–1148 (2008)

  19. 19.

    Q. Chen, H. Liu, Y. Xin, X. Cheng, Chem. Eng. J. 241, 145–154 (2014)

  20. 20.

    Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, Environ. Sci. Technol. 35, 966–970 (2001)

  21. 21.

    T. Al-Fahdi, F.A. Marzouqi, A.T. Kuvarega, B.B. Mamba, S.M.Z.A. Kindy, Y. Kim, R. Selvaraj, J. Photochem. Photobiol. A 374, 75–83 (2019)

  22. 22.

    X. Li, T. Xia, C. Xu, J. Murowchick, X. Chen, Catal. Today 225, 64–73 (2014)

  23. 23.

    X. Li, H. Liu, D. Luo, J. Li, Y. Huang, H. Li, Y. Fang, Y. Xu, L. Zhu, Chem. Eng. J. 180, 151–158 (2012)

  24. 24.

    X. Ning, J. Li, B. Yang, W. Zhen, Z. Li, B. Tian, G. Lu, Appl. Catal. B 212, 129–139 (2017)

  25. 25.

    A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, J. Photochem. Photobiol. A 360, 34–43 (2018)

  26. 26.

    M. Kim, Y.K. Kim, S.K. Lim, S. Kim, S.-I. In, Appl. Catal. B 166–167, 423–431 (2015)

  27. 27.

    S. Qian, C. Wang, W. Liu, Y. Zhu, W. Yao, X. Lu, J. Mater. Chem. 21, 4945–4952 (2011)

  28. 28.

    Y. Huo, X. Yang, J. Zhu, H. Li, Appl. Catal. B 106, 69–75 (2011)

  29. 29.

    J. Zhang, F.X. Xiao, G. Xiao, B. Liu, New J. Chem. 39, 279–286 (2015)

  30. 30.

    T. Zhao, Z. Xing, Z. Xiu, Z. Li, L. Shen, Y. Cao, M. Hu, S. Yang, W. Zhou, Mater. Res. Bull. 103, 114–121 (2018)

  31. 31.

    Y.M. Hunge, A.A. Yadav, V.L. Mathe, J. Mater. Sci. Mater. Electron. 29, 6183–6187 (2018)

  32. 32.

    T. Ali, Y.M. Hunge, A. Venkatraman, J. Mater. Sci. Mater. Electron. 29, 1209–1215 (2018)

  33. 33.

    A.A. Yadav, Y.M. Hunge, V.L. Mathe, S.B. Kulkarni, J. Mater. Sci. Mater. Electron. 29, 15069–15073 (2018)

  34. 34.

    Y.M. Hunge, A.A. Yadav, A.G. Dhodamani, N. Suzukia, C. Terashima, A. Fujishima, V.L. Mathe, Ultrason. Sonochem. 1, 104849 (2020)

  35. 35.

    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Chem. Phys. Lett. 731, 136582 (2019)

  36. 36.

    J. Pan, G. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. 123, 2181–2185 (2011)

  37. 37.

    L. Ye, J. Mao, J. Liu, Z. Jiang, T. Peng, L. Zan, J. Mater. Chem. A 1, 10532–10537 (2013)

  38. 38.

    B. Zhao, F. Chen, Q. Huang, J. Zhang, Chem. Commun. 0, 5115–5117 (2009)

  39. 39.

    J. Li, Z. Zhou, L. Zhu, K. Xu, H. Tang, J. Phys. Chem. C 111, 16768–16773 (2007)

  40. 40.

    J. Zou, J. Gao, F. Xie, J. Alloys Compd. 497, 420–427 (2010)

  41. 41.

    H. Sekhar, D.N. Rao, J. Alloys Compd. 517, 103–110 (2012)

  42. 42.

    Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, J. Am. Chem. Soc. 133, 10878–10884 (2011)

  43. 43.

    V.R. Shinde, H.-S. Shim, T.P. Gujar, H.J. Kim, W.B. Kim, Adv. Mater. 20, 1008–1012 (2008)

  44. 44.

    Z. Li, Z. Liu, B. Li, D. Li, C. Ge, Y. Fang, J. Mater. Sci. Mater. Electron. 27, 2904–2913 (2016)

  45. 45.

    H. Zhang, T. Ji, Y. Liu, J. Cai, J. Phys. Chem. C 112, 8604–8608 (2008)

  46. 46.

    Y.M. Hunge, MOJ Poly Sci. 1, 00020 (2017)

  47. 47.

    E. Morgado Jr., M.A.S. de Abreu, O.R.C. Pravia, B.A. Marinkovic, P.M. Jardim, F.C. Rizzo, A.S. Araújo, Solid State Sci. 8, 888–900 (2006)

  48. 48.

    I.S. Grover, S. Singh, B. Pal, Appl. Surf. Sci. 280, 366–372 (2013)

  49. 49.

    B. Mazinani, N.M. Zalani, M. Sakaki, K. Yanagisawa, J. Mater. Sci. Mater. Electron 29, 11945–11950 (2018)

  50. 50.

    J. Li, M.W.G. Hoffmann, H. Shen, C. Fabrega, J.D. Prades, T. Andreu, F. Hernandez-Ramirez, S. Mathur, J. Mater. Chem. 22, 20472–20476 (2012)

  51. 51.

    Y. Hu, X. Gao, L. Yu, Y. Wang, J. Ning, S. Xu, X.W. Lou, Angew. Chem. 125, 5746–5749 (2013)

  52. 52.

    Z. Hu, H. Quan, Z. Chen, Y. Shao, D. Li, Photochem. Photobiol. Sci. 11, 51–59 (2017)

  53. 53.

    W.-Z. Gao, Y. Xu, Y. Chen, W.-F. Fu, Chem. Commun. 51, 13217–13220 (2015)

  54. 54.

    X. Wang, G. Liu, Z.-G. Chen, F. Li, L. Wang, G.Q. Lu, H.-M. Cheng, Chem. Commun. 0, 3452–3454 (2009)

  55. 55.

    Y. Tang, X. Hu, C. Liu, Phys. Chem. Chem. Phys. 16, 25321–25329 (2014)

  56. 56.

    N.K. Eswar, P.C. Ramamurthy, G. Madras, Photochem. Photobiol. Sci. 14, 1227–1237 (2015)

  57. 57.

    Z. Yang, Y. Jiang, W. Zhang, Y. Ding, Y. Jiang, J. Yin, P. Zhang, H. Luo, Science 14, 15–26, (2019).

  58. 58.

    Y. Li, J. Wang, H. Yao, L. Dang, Z. Li, J. Mol. Catal. Chem. 334, 116–122 (2011)

  59. 59.

    Z. He, W. Que, J. Chen, X. Yin, Y. He, J. Ren, ACS Appl. Mater. Interfaces 4, 6816–6826 (2012)

  60. 60.

    Y.M. Hunge, Ceram. Int. 43, 10089–10096 (2017)

  61. 61.

    A. Turolla, A. Piazzoli, J. Farner Budarz, M.R. Wiesner, M. Antonelli, Chem. Eng. J. 271, 260–268 (2015)

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21376199) and the Innovative Experimental Program for College Students of China (No. 201910530025)

Author information

Correspondence to Zhanpeng Liu or Ping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 776 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, Y., Su, Y. et al. CdS-decorated surface-coarsened TiO2 nanobelts with enhanced visible-light photocatalytic performances. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03059-6

Download citation