Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rational design of layer-by-layer assembled polypyrrole-based nanocomposite film for high-performance supercapacitor

  • 12 Accesses

Abstract

In this work, a novel layer-by-layer assembled nanocomposite film of polypyrrole/graphene oxide with polypyrrole/nanocrystalline cellulose (PPy/GO|PPy/NCC) was fabricated. The number of layers is crucial to obtain high-performance supercapacitor. The electrochemical performances and structural changes of PPy/GO|PPy/NCC nanocomposite before and after reduction were compared. The structure and morphology of these bilayers were analyzed using Fourier-transform infrared spectroscopy and field emission scanning electron microscopy, respectively. The polypyrrole/nanocrystalline cellulose was attached to the polypyrrole/graphene oxide layer firmly without any apparent defects and cracks. Moreover, the prepared bilayer film gave a surface area of 42.88 m2 g−1, much higher than bilayer after reduction and a mesoporosity system, which is suitable for energy storage studies. This supercapacitor device delivered a high specific capacitance of 562.9 F g−1 at 3 mV s−1 with a maximum specific energy of 19.3 W h kg−1 and a maximum specific power of 884.6 W kg−1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    F. Wang, T. Wang, S. Sun, Y. Xu, R. Yu, H. Li, Sci. Rep. 8, 8908 (2018). https://doi.org/10.1038/s41598-018-27171-0

  2. 2.

    T. Purkait, G. Singh, D. Kumar, M. Singh, RS Dey, Sci. Rep. 8, 640 (2018). https://doi.org/10.1038/s41598-017-18593-3

  3. 3.

    S. Kulandaivalu, M.Z. Hussein, A. Mohamad Jaafar, M.A.A. Mohd Abdah, N.H.N. Azman, RSC Adv. 9, p. 40478, (2019), https://doi.org/10.1039/C9RA08134H.

  4. 4.

    N.H.N. Azman, M.S. Mamat Mat Nazir, L.H. Ngee, Y. Sulaiman, Int. J. Energ Res. 42, p. 2104, (2018), https://doi.org/10.1002/er.4001.

  5. 5.

    M. Ul-Islam, T. Khan, J.K. Park, Carbohydr. Polym. 88, 596 (2012). https://doi.org/10.1016/j.carbpol.2012.01.006

  6. 6.

    L. Ma, R. Liu, H. Niu, M. Zhao, Y. Huang, Compos. Sci. Technol. 137, p. 87, (2016), https://doi.org/10.1016/j.compscitech.2016.10.027.

  7. 7.

    L. Chen, L. Chen, Q. Ai et al., Chem. Eng. J. 334, 184 (2018). https://doi.org/10.1016/j.cej.2017.10.038

  8. 8.

    R. Aamir, N. Leif, S. Martin, S. Maria, Adv. Energy Mater. 2, p. 445, (2012), https://doi.org/10.1002/aenm.201100713.

  9. 9.

    Y. Zhang, Z. Chen, D. Zhang, Y. Zhao, P. Wu, F. Wang, Mater. Lett. 227, 158 (2018). https://doi.org/10.1016/j.matlet.2018.04.113

  10. 10.

    J. Hong, J.Y. Han, H. Yoon et al., Nanoscale 3, 4515 (2011). https://doi.org/10.1039/C1NR10575B

  11. 11.

    S. Kulandaivalu, Y. Sulaiman, Energies 12, 2107 (2019)

  12. 12.

    X. Liu, N. Wen, X. Wang, Y. Zheng, Nanomater. Nanotechnol. (2015), https://doi.org/10.5772/60596.

  13. 13.

    S. Pansri, S. Noothongkaew, J. Energy Storage 22, p. 153, (2019), https://doi.org/10.1016/j.est.2019.02.009.

  14. 14.

    S. Mihara, T. Tsubota, N. Murakami, T. Ohno, J. Nanosci. Nanotechnol. 12, 6930 (2012). https://doi.org/10.1166/jnn.2012.6142

  15. 15.

    SNJ Syed Zainol Abidin, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman (2017) J. Nanomater. 2017: 13. https://doi.org/10.1155/2017/5798614

  16. 16.

    L.-Q. Fan, G.-J. Liu, J.-H. Wu, L. Liu, J.-M. Lin, Y.-L. Wei, Electrochim. Acta 137, 26 (2014). https://doi.org/10.1016/j.electacta.2014.05.137

  17. 17.

    W. Yang, Y. Zhao, X. He et al., Nanoscale Res. Lett. 10, 222 (2015). https://doi.org/10.1186/s11671-015-0932-1

  18. 18.

    S. Kulandaivalu, Y. Sulaiman, J. Power Sources 419, 181 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.079

  19. 19.

    Z. Zou, W. Xiao, Y. Zhang, H. Yu, W. Zhou, Appl. Surf. Sci. 500, 144244 (2020). https://doi.org/10.1016/j.apsusc.2019.144244

  20. 20.

    X. Fan, Z. Yang, N. He, RSC Adv. 5, 15096 (2015). https://doi.org/10.1039/c4ra15258a

  21. 21.

    S. Kulandaivalu, R. Abdul Shukur, Y. Sulaiman, Synth. Met. 245, 24 (2018). https://doi.org/10.1016/j.synthmet.2018.08.002

  22. 22.

    P. Asen, S. Shahrokhian, J. Phys. Chem. C 121, 6508 (2017). https://doi.org/10.1021/acs.jpcc.7b00534

  23. 23.

    W.L. Jia, J. Li, Z.J. Lu, Y.F. Juan, Y.Q. Jiang, J. Alloys Compd. 815, p. 152373, (2020), https://doi.org/10.1016/j.jallcom.2019.152373.

  24. 24.

    D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci.: Mater. Electron. 28, 7784 (2017). https://doi.org/10.1007/s10854-017-6474-9

  25. 25.

    V. Khomenko, E. Frackowiak, F Béguin, Electrochim. Acta 50, 2499 (2005). https://doi.org/10.1016/j.electacta.2004.10.078

  26. 26.

    T. Liu, L. Finn, M. Yu et al., Nano Lett. 14, 2522 (2014). https://doi.org/10.1021/nl500255v

  27. 27.

    Y.S. Lim, H.N. Lim, S.P. Lim, N.M. Huang, RSC Adv. 4, p. 56445, (2014), https://doi.org/10.1039/C4RA09234A.

  28. 28.

    H. Feng, B. Wang, L. Tan, N. Chen, N. Wang, B. Chen, J. Power Sources 246, 621 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.002

  29. 29.

    S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song, J.-H. Jang, ACS Appl. Mater. Interfaces. 5, 1596 (2013). https://doi.org/10.1021/am3021894

  30. 30.

    L. Zhang, K.N. Hui, K. San Hui, H. Lee, J. Power Sources 318, 76 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.010

  31. 31.

    J.S. Shayeh, S.O.R. Siadat, M. Sadeghnia, K. Niknam, M. Rezaei, N. Aghamohammadi, J. Mol. Liq. 220, 489 (2016). https://doi.org/10.1016/j.molliq.2016.04.122

  32. 32.

    H. Wang, Y. Song, J. Zhou et al., Electrochim. Acta 212, 775 (2016). https://doi.org/10.1016/j.electacta.2016.07.035

  33. 33.

    B. Yue, C. Wang, X. Ding, G.G. Wallace, Electrochim. Acta 68, 18 (2012). https://doi.org/10.1016/j.electacta.2012.01.109

  34. 34.

    W. Wang, Q. Hao, W. Lei, X. Xia, X. Wang, RSC Adv. 2, p. 10268, (2012), https://doi.org/10.1039/C2RA21292G.

  35. 35.

    J.-G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, ACS Appl. Mater. Interfaces. 10, 18816 (2018). https://doi.org/10.1021/acsami.8b05660

  36. 36.

    F. Zhang, F. Xiao, Z.H. Dong, W. Shi, Electrochim. Acta 114, 125 (2013). https://doi.org/10.1016/j.electacta.2013.09.153

  37. 37.

    U. Male, S. Uppugalla, P. Srinivasan, J. Solid State Electrochem. 19, 3381 (2015). https://doi.org/10.1007/s10008-015-2978-5

  38. 38.

    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012). https://doi.org/10.1039/C1CS15060J

  39. 39.

    P. Sundriyal, S. Bhattacharya, ACS Appl. Mater. Interfaces 9, p. 38507, (2017), https://doi.org/10.1021/acsami.7b11262.

  40. 40.

    S. Li, C. Zhao, K. Shu et al., Carbon 79, 554 (2014). https://doi.org/10.1016/j.carbon.2014.08.014

  41. 41.

    Y. Bo, Y. Zhao, Z. Cai, A. Bahi, C. Liu, F. Ko, Cellulose 25, 4079 (2018). https://doi.org/10.1007/s10570-018-1845-9

  42. 42.

    J. Xu, D. Wang, L. Fan et al., Org. Electron. 26, 292 (2015). https://doi.org/10.1016/j.orgel.2015.07.054

  43. 43.

    P. Asen, S. Shahrokhian, A. Zad, J. Electroanal. Chem. 823, 505 (2018). https://doi.org/10.1016/j.jelechem.2018.06.048

Download references

Acknowledgement

The authors express their appreciation to the Universiti Putra Malaysia Research Grant under the Project Number of GP-IPS/2017/9580500 for financial support.

Author information

Correspondence to Yusran Sulaiman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulandaivalu, S., Sulaiman, Y. Rational design of layer-by-layer assembled polypyrrole-based nanocomposite film for high-performance supercapacitor. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03051-0

Download citation