Advertisement

Optical response and structural properties of Fe-doped Pb(Zr0.52Ti0.48)O3 nanopowders

  • Esmaeil PakizehEmail author
Article
  • 5 Downloads

Abstract

In this paper, the Pb(Zr0.52Ti0.48)1−xFexO3 (FePZT, x = 0.05) nanopowders were prepared by dry and wet sol–gel methods in the morphotropic phase boundary (MPB) region. The effect of Fe concentration on the structural, morphological, and optical properties of PZT nanopowders was investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR), and Ultraviolet–Visible (UV–Vis) analysis. XRD results showed that the nanopowders have a perovskite structure with the tetragonal phase. The lattice parameters and average crystallite size of samples decreased from 33 to 21 nm with increasing Fe incorporation due to the substitution of Fe atoms instead of Ti and Zr atoms. FESEM images showed that all average diameters of the nanopowders decreased with the Fe concentration. The optical properties of the pure and FePZT nanopowders such as longitudinal optical (LO) and transverse optical (TO) phonon frequencies, refractive index, extinction coefficient, and the real-imaginary parts of dielectric function were examined by the Kramers–Kronig model. As a result, the TO and refractive index of nanopowders are increased by substituting Ti and Zr with Fe atoms due to their different ionic radius. Also, while the crystallite size increases from 20.95 to 33.52 nm, the LO–TO splitting increases too. The optical band-gap values of the pure and FePZT nanopowders were estimated using UV–Vis spectroscopy and Kubelka–Munk model. The band-gap increased from 3.52 to 3.60 eV with a decrease in the crystal size of nanopowders.

Notes

References

  1. 1.
    B. Jaffe, Piezoelectric ceramics (Elsevier, Saint Louis, 2012)Google Scholar
  2. 2.
    H. Lee, H. Kim, D.Y. Kim, Y. Seo, Pure piezoelectricity generation by a flexible nanogenerator based on lead zirconate titanate nanofibers. ACS Omega 4, 2610–2617 (2019)CrossRefGoogle Scholar
  3. 3.
    X. Niu, W. Jia, S. Qian, J. Zhu, J. Zhang, X. Hou, J. Mu, W. Geng, J. Cho, J. He, X. Chou, High-Performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustain. Chem. Eng. 7, 979–985 (2019)CrossRefGoogle Scholar
  4. 4.
    Q.-L. Zhao, G.-P. He, J.-J. Di, W.-L. Song, Z.-L. Hou, P.-P. Tan, D.-W. Wang, M.-S. Cao, Flexible semitransparent energy harvester with high pressure sensitivity and power density based on laterally aligned PZT single-crystal nanowires. ACS Appl. Mater. Interfaces 9, 24696–24703 (2017)CrossRefGoogle Scholar
  5. 5.
    W. Jin, Z. Wang, H. Huang, X. Hu, Y. He, M. Li, L. Li, Y. Gao, Y. Hu, H. Gu, High-performance piezoelectric energy harvesting of vertically aligned Pb(Zr, Ti)O3 nanorod arrays. RSC Adv. 8, 7422–7427 (2018)CrossRefGoogle Scholar
  6. 6.
    E. Pakizeh, M. Moradi, Effect of particle size on the optical properties of lead zirconate titanate nanopowders. J. Am. Ceram. Soc. 101, 5335–5345 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Jian, A.S. Kumar, C.S.C. Lekha, S. Vivek, I. Salvado, A.L. Kholkin, S.S. Nair, Strong sub-resonance magnetoelectric coupling in PZT-NiFe2O4-PZT thin film composite. Nano-Structures & Nano-Objects 18, 100272 (2019)CrossRefGoogle Scholar
  8. 8.
    W.-S. Jung, Y.-H. Do, M.-G. Kang, C.-Y. Kang, Energy harvester using PZT nanotubes fabricated by template-assisted method. Curr. Appl. Phys. 13, S131–S134 (2013)CrossRefGoogle Scholar
  9. 9.
    S.D. Hyun, H.W. Park, Y.J. Kim, M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kwon, T. Moon, K.D. Kim, Y.B. Lee, B.S. Kim, C.S. Hwang, Dispersion in ferroelectric switching performance of polycrystalline Hf0.5Zr0.5O2 Thin Films. ACS Appl. Mater. Interfaces 10, 35374–35384 (2018)CrossRefGoogle Scholar
  10. 10.
    X.-D. Jian, B. Lu, D.-D. Li, Y.-B. Yao, T. Tao, B. Liang, X.-W. Lin, J.-H. Guo, Y.-J. Zeng, S.-G. Lu, Enhanced electrocaloric effect in Sr2+-modified lead-free BaZrxTi1–xO3 ceramics. ACS Appl. Mater. Interfaces 11, 20167–20173 (2019)CrossRefGoogle Scholar
  11. 11.
    S.B. Seshadri, M.M. Nolan, G. Tutuncu, J.S. Forrester, E. Sapper, G. Esteves, T. Granzow, P.A. Thomas, J.C. Nino, T. Rojac, J.L. Jones, Unexpectedly high piezoelectricity of Sm-doped lead zirconate titanate in the Curie point region. Sci. Rep. 8, 4120 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Tang, J. Liu, H. Huang, Dielectric, piezoelectric and ferroelectric properties of flexible 0–3 type PZT/PVDF composites doped with grapheme. J. Electron. Mater. 48, 4033–4039 (2019)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, Dielectric, ferroelectric and piezoelectric properties of PZT ceramics by ZnO doping. Integr. Ferroelectr. 199, 105–111 (2019)CrossRefGoogle Scholar
  14. 14.
    J. Caceres, C. Passos, J. Chagas, R. Barbieri, R. Corteletti, Study of structural and electric properties of the PZT 52/48 doped with Er+3. Res. Mater. (2019).  https://doi.org/10.1590/1980-5373-mr-2019-0123 CrossRefGoogle Scholar
  15. 15.
    S.W. Ko, W. Zhu, C. Fragkiadakis, T. Borman, K. Wang, P. Mardilovich, S. Trolier-McKinstry, Improvement of reliability and dielectric breakdown strength of Nb-doped lead zirconate titanate films via microstructure control of seed. J. Am. Ceram. Soc. 102, 1211–1217 (2019)CrossRefGoogle Scholar
  16. 16.
    S. Matteppanavar, B. Angadi, S. Rayaprol, Neutron diffraction studies on chemical and magnetic structure of multiferroic PbFe 0.67 W 0.33 O 3, in AIP conference proceedings, American Institute of Physics, 2014, pp. 1669–1671.Google Scholar
  17. 17.
    S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, B. Sahoo, Evidence for room-temperature weak ferromagnetic and ferroelectric ordering in magnetoelectric Pb (Fe0.634W0.266Nb0.1)O3 Ceramic. J. Supercond. Novel Magn. 30, 1317–1325 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Madolappa, A. Anupama, P. Jaschin, K. Varma, B. Sahoo, Magnetic and ferroelectric characteristics of Gd 3+ and Ti 4+ co-doped BiFeO3 ceramics. Bull. Mater. Sci. 39, 593–601 (2016)CrossRefGoogle Scholar
  19. 19.
    V. Khopkar, B. Sahoo, Low temperature dielectric properties and NTCR behavior of BaFe0.5Nb0.5O3 double perovskite ceramic. Phys. Chem. Chem. Phys. 22, 2986–2998 (2020)CrossRefGoogle Scholar
  20. 20.
    H.S. Mohanty, T. Dam, H. Borkar, A. Kumar, K. Mishra, S. Sen, B. Behera, B. Sahoo, D.K. Pradhan, Studies of ferroelectric properties and leakage current behaviour of microwave sintered ferroelectric Na0.5Bi0.5TiO3 ceramic. Ferroelectrics 517, 25–33 (2017)CrossRefGoogle Scholar
  21. 21.
    H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, D.K. Pradhan, Impedance spectroscopic study on microwave sintered (1–x) Na0.5Bi0.5TiO3–x BaTiO3 ceramics. J. Mater. Sci.: Mater Electron. 29, 6966–6977 (2018)Google Scholar
  22. 22.
    S. Matteppanavar, S. Rayaprol, B. Angadi, B. Sahoo, Composition dependent room temperature structure, electric and magnetic properties in magnetoelectric Pb (Fe1/2Nb1/2) O3Pb (Fe2/3W1/3) O3 solid-solutions. J. Alloys Compd. 677, 27–37 (2016)CrossRefGoogle Scholar
  23. 23.
    S.T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, B. Sahoo, Investigation on structural, Mössbauer and ferroelectric properties of (1–x) PbFe0.5Nb0.5O3–(x) BiFeO3 solid solution. J. Magn. Magn. Mater. 418, 122–127 (2016)CrossRefGoogle Scholar
  24. 24.
    A.S. Priya, I.S. Banu, M. Chavali, Influence of (La, Cu) doping on the room temperature multiferroic properties of BiFeO3 Ceramics. Arab. J. Sci. Eng. 40, 2079–2084 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Prabu, I. Banu, S.T. Sundari, R. Krishnan, K.N. Prakash, Y. Chen, M. Chavali, Optical studies of pulsed laser deposited nanostructured Pb (Zr0.52Ti0.48)O3 thin film by spectroscopic ellipsometry. J. Nanosci. Nanotechnol. 14, 5335–5341 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Prabu, I.S. Banu, S. Gobalakrishnan, M. Chavali, Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol–gel method. J. Alloys Compd. 551, 200–207 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Prabu, I. Banu, S. Gobalakrishnan, M. Chavali, S. Umapathy, Synthesis and optical characterization of lead zirconate titanate (52/48) powders by sol–gel method. Adv. Sci. Eng. Med. 5, 496–499 (2013)CrossRefGoogle Scholar
  28. 28.
    E. Venkata Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, M.A. Valente, Effect of Fe-doping on the structure and magnetoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 synthesized by a chemical route. J. Mater. Chem. C 4, 1066–1079 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Puthucheri, P.K. Pandey, N.S. Gajbhiye, A. Gupta, A. Singh, R. Chatterjee, S.K. Date, Microstructural, electrical, and magnetic properties of acceptor-doped nanostructured lead zirconate titanate. J. Am. Ceram. Soc. 94, 3941–3947 (2011)CrossRefGoogle Scholar
  30. 30.
    E. Perez-Delfin, J.E. García, D.A. Ochoa, R. Pérez, F. Guerrero, J.A. Eiras, Effect of Mn-acceptor dopant on dielectric and piezoelectric responses of lead lanthanum zirconate titanate piezoceramics. J. Appl. Phys. 110, 034106 (2011)CrossRefGoogle Scholar
  31. 31.
    S.R. Sangawar, B. Praveenkumar, P. Divya, H.H. Kumar, Fe doped hard PZT ceramics for high power SONAR transducers. Mater. Today 2, 2789–2794 (2015)Google Scholar
  32. 32.
    T.-G. Lee, H.-J. Lee, S.-W. Kim, D.-H. Kim, S.H. Han, H.-W. Kang, C.-Y. Kang, S. Nahm, Piezoelectric properties of Pb(Zr, Ti)O3-Pb(Ni, Nb)O3 ceramics and their application in energy harvesters. J. Eur. Ceram. Soc. 37, 3935–3942 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Kumar, A. Goswami, K. Singh, R. McGee, T. Thundat, D. Kaur, Magnetoelectric coupling in Ni-Mn-In/PLZT artificial multiferroic heterostructure and its application in mid IR photothermal modulation by external magnetic field. ACS Appl. Electron. Mater. 1, 11 (2019)Google Scholar
  34. 34.
    Y. Lu, J. Chen, Z. Cheng, S. Zhang, The PZT/Ni unimorph magnetoelectric energy harvester for wireless sensing applications. Energy Convers. Manag. 200, 112084 (2019)CrossRefGoogle Scholar
  35. 35.
    L.D. Geng, Y. Yan, S. Priya, Y.U. Wang, Computational study of cobalt-modified nickel-ferrite/PZT magnetoelectric composites for voltage tunable inductor applications. Acta Mater. 166, 493–502 (2019)CrossRefGoogle Scholar
  36. 36.
    Y. Yu, J. Wu, T. Zhao, S. Dong, H. Gu, Y. Hu, MnO2 doped PSN–PZN–PZT piezoelectric ceramics for resonant actuator application. J. Alloys Compd. 615, 676–682 (2014)CrossRefGoogle Scholar
  37. 37.
    H.-S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, K.K. Shung, PMN-PT–PZT composite films for high frequency ultrasonic transducer applications. Sens. Actuators A 179, 121–124 (2012)CrossRefGoogle Scholar
  38. 38.
    N. Kumari, S. Monga, M. Arif, N. Sharma, A. Sanger, A. Singh, P.M. Vilarinho, V. Gupta, K. Sreenivas, R.S. Katiyar, J.F. Scott, Multifunctional behavior of acceptor-cation substitution at higher doping concentration in PZT ceramics. Ceram. Int. 45, 12716–12726 (2019)CrossRefGoogle Scholar
  39. 39.
    S. Adel, B. Cherifa, D.D. Elhak, B. Mounira, Effect of Cr2O3 and Fe2O3 doping on the thermal activation of un-polarized PZT charge carriers. Boletín de la Sociedad Española de Cerámica y Vidrio 57, 124–131 (2018)CrossRefGoogle Scholar
  40. 40.
    S. Samanta, V. Sankaranarayanan, K. Sethupathi, Effect of successive multiple doping of La, Nb and Fe on structure and lattice vibration of MPB PZT. Mater. Today 5, 27919–27927 (2018)Google Scholar
  41. 41.
    B. Praveen Kumar, S.R. Sangawar, H.H. Kumar, Structural and electrical properties of double doped (Fe3+ and Ba2+) PZT electroceramics. Ceram. Int. 40, 3809–3812 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Zhu, Z. Du, H. Li, B. Chen, L. Jing, R.Y.J. Tay, J. Lin, S.H. Tsang, E.H.T. Teo, Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator. Appl. Surf. Sci. 425, 1059–1065 (2017)CrossRefGoogle Scholar
  43. 43.
    M. Zhu, H. Zhang, Z. Du, C. Liu, Structural insight into the optical and electro-optic properties of lead zirconate titanate for high-performance photonic devices. Ceram. Int. 45, 22324–22330 (2019)CrossRefGoogle Scholar
  44. 44.
    H. Zhao, W. Ren, X. Liu, Design and fabrication of micromachined pyroelectric infrared detector array using lead titanate zirconate (PZT) thin film. Ceram. Int. 43, S464–S469 (2017)CrossRefGoogle Scholar
  45. 45.
    M.C. Rodríguez-Aranda, F. Calderón-Piñar, M.A. Hernández-Landaverde, J. Heiras, R. Zamorano-Ulloa, D. Ramírez-Rosales, J.M. Yáñez-Limón, Photoluminescence of sol–gel synthesized PZT powders. J. Lumin. 179, 280–286 (2016)CrossRefGoogle Scholar
  46. 46.
    E. Longo, A.T. de Figueiredo, M.S. Silva, V.M. Longo, V.R. Mastelaro, N.D. Vieira, M. Cilense, R.W.A. Franco, J.A. Varela, Influence of structural disorder on the photoluminescence emission of PZT powders. J. Phys. Chem. A 112, 8953–8957 (2008)CrossRefGoogle Scholar
  47. 47.
    J. Cardin, D. Leduc, T. Schneider, C. Lupi, D. Averty, H.W. Gundel, Optical characterization of PZT thin films for waveguide applications. J. Eur. Ceram. Soc. 25, 2913–2916 (2005)CrossRefGoogle Scholar
  48. 48.
    A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  49. 49.
    D.-M. Smilgies, Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J. Appl. Crystallogr. 42, 1030–1034 (2009)CrossRefGoogle Scholar
  50. 50.
    F. Wooten, Maxwell's equations and the dielectric function, in Optical properties of solids, ed. by F. Wooten (Academic Press, New York, 1972), pp. 15–41CrossRefGoogle Scholar
  51. 51.
    V. Lucarini, K.-E. Peiponen, J.J. Saarinen, E.M. Vartiainen, Kramers-Kronig relations and sum rules in linear optics, in Kramers-Kronig relations in optical materials research, ed. by V. Lucarini, K.-E. Peiponen, J.J. Saarinen, E.M. Vartiainen (Springer, Berlin, 2005), pp. 27–48Google Scholar
  52. 52.
    E. Pakizeh, S. Hosseini, A. Kompany, M. Ghasemifard, Synthesis and optical characterization of pyroelectric nanopowders based on PZT (95/5). Int. J. Nanosci. 9, 193–199 (2010)CrossRefGoogle Scholar
  53. 53.
    E. Pakizeh, M. Moradi, Kramers-Kronig method for determination of optical properties of PZT nanotubes fabricated by sol–gel method and porous anodic alumina with high aspect ratio. Int. J. Modern Phys. B 32, 1850096 (2018)CrossRefGoogle Scholar
  54. 54.
    M.A. Assiri, M. Aslam Manthrammel, A.M. Aboraia, I.S. Yahia, H.Y. Zahran, V. Ganesh, M. Shkir, S. AlFaify, A.V. Soldatov, Kramers-Kronig calculations for linear and nonlinear optics of nanostructured methyl violet (CI-42535): new trend in laser power attenuation using dyes. Phys. B 552, 62–70 (2019)CrossRefGoogle Scholar
  55. 55.
    M. Aslam Manthrammel, A.M. Aboraia, M. Shkir, I.S. Yahia, M.A. Assiri, H.Y. Zahran, V. Ganesh, S. AlFaify, A.V. Soldatov, Optical analysis of nanostructured rose bengal thin films using Kramers-Kronig approach: New trend in laser power attenuation. Opt. Laser Technol. 112, 207–214 (2019)CrossRefGoogle Scholar
  56. 56.
    A.A.A. Darwish, A.M. Aboraia, A.V. Soldatov, I.S. Yahia, Deposition of Rhodamine B dye on flexible substrates for flexible organic electronic and optoelectronic: optical spectroscopy by Kramers-Kronig analysis. Opt. Mater. 95, 109219 (2019)CrossRefGoogle Scholar
  57. 57.
    D. Roessler, Kramers-Kronig analysis of reflection data. Br. J. Appl. Phys. 16, 1119 (1965)CrossRefGoogle Scholar
  58. 58.
    F. Behzadi, E. Saievar-Iranizad, E. Pakizeh, Optical study on single-layer photoluminescent graphene oxide nanosheets through a simple and green hydrothermal method. J. Photochem. Photobiol. A 364, 595–601 (2018)CrossRefGoogle Scholar
  59. 59.
    C. Kittel, Introduction to solid state physics (Wiley, New York, 1976)Google Scholar
  60. 60.
    S.S. Abdullahi, S. Güner, Y.K.I.M. Musa, B.I. Adamu, M.I. Abdulhamid, Sımple method for the determination of band gap of a nanopowdered sample using kubelka munk theory. J. Niger. Assoc. Math. Phys. 35, 241–246 (2016)Google Scholar
  61. 61.
    F.P. Miller, A.F. Vandome, J. McBrewster, Beer-Lambert Law (VDM Publishing, Saarbrücken, 2009)Google Scholar
  62. 62.
    N. Kumari, S. Monga, M. Arif, N. Sharma, A. Sanger, A. Singh, P.M. Vilarinho, V. Gupta, K. Sreenivas, R.S. Katiyar, Multifunctional behavior of acceptor-cation substitution at higher doping concentration in PZT ceramics. Ceram. Int. 45, 12716–12726 (2019)CrossRefGoogle Scholar
  63. 63.
    R. Gupta, M. Tomar, A. Kumar, V. Gupta, Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application. Smart Mater. Struct. 26, 035002 (2017)CrossRefGoogle Scholar
  64. 64.
    G.H. Khorrami, A.K. Zak, A. Kompany, Optical and structural properties of X-doped (X= Mn, Mg, and Zn) PZT nanoparticles by Kramers-Kronig and size strain plot methods. Ceram. Int. 38, 5683–5690 (2012)CrossRefGoogle Scholar
  65. 65.
    E. Pakizeh, M. Moradi, A. Ahmadi, Effect of sol–gel pH on XRD peak broadening, lattice strain, ferroelectric domain orientation, and optical bandgap of nanocrystalline Pb1. 1 (Zr0. 52Ti0. 48) O3. J. Phys. Chem. Solids 75, 174–181 (2014)CrossRefGoogle Scholar
  66. 66.
    A.K. Zak, W.A. Majid, Effect of solvent on structure and optical properties of PZT nanoparticles prepared by sol–gel method, in infrared region. Ceram. Int. 37, 753–758 (2011)CrossRefGoogle Scholar
  67. 67.
    S. Samanta, V. Sankaranarayanan, K. Sethupathi, Band gap, piezoelectricity and temperature dependence of differential permittivity and energy storage density of PZT with different Zr/Ti ratios. Vacuum 156, 456–462 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of Gas and Petroleum (Gachsaran)Yasouj UniversityGachsaranIran

Personalised recommendations