Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Investigation on the electrical properties of amorphous IZALO thin-film transistors

  • 5 Accesses

Abstract

Indium-Zinc-Aluminum-Lithium Oxide (IZALO) films and thin-film transistors (TFTs) were fabricated by radio frequency magnetron sputtering in this paper. X-ray diffraction test data show that IZALO films annealed at 325 ℃ in air atmosphere are amorphous. IZALO TFTs have excellent electrical properties with saturation mobility (µsat) of 28.2 cm2/V s, on/off current ratio (Ion/Ioff) of 1 × 109, off-state current (Ioff) of 1 × 10−12A, subthreshold swing (SS) of 0.51 V/dec, and threshold voltage (VTH) of 1.4V, respectively. The VTH shifts of IZALO TFTs under positive bias and negative bias were investigated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003)

  2. 2.

    H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J. Non-Cryst. Solids 198, 165–169 (1996)

  3. 3.

    Y.-L. Wang, F. Ren, W. Lim, D. Norton, S. Pearton, I. Kravchenko, J. Zavada, Room temperature deposited indium zinc oxide thin film transistors. Appl. Phys. Lett. 90, p. 232103, (2007).

  4. 4.

    E. Fortunato, P. Barquinha, G. Goncalves, L. Pereira, R. Martins, High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors. Solid-State Electron. 52, pp. 443–448, (2008).

  5. 5.

    H. Chiang, J. Wager, R. Hoffman, J. Jeong, D.A. Keszler, High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, p. 013503, (2005).

  6. 6.

    R. Hoffman, Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors. Solid State Electron. 50, pp. 784–787, (2006).

  7. 7.

    A. Suresh, P. Wellenius, A. Dhawan, J. Muth, Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 90, p. 123512, (2007).

  8. 8.

    H. Hosono, K. Nomura, Y. Ogo, T. Uruga, T. Kamiya, Factors controlling electron transport properties in transparent amorphous oxide semiconductors. J. Non-cryst. Solids 354, pp. 2796–2800, (2008).

  9. 9.

    L. Ao, L. Guo-Xia, S. Fu-Kai, Z. Hui-Hui, B. Shin, W. Lee, C. Cho, High-performance InTiZnO thin-film transistors deposited by magnetron sputtering. Chin. Phys. Lett. 30, p. 127301, (2013).

  10. 10.

    J. Park, Y. Lim, M. Jang, S. Choi, N. Hwang, M. Yi, Improved stability of aluminum co-sputtered indium zinc oxide thin-film transistor. Mater. Res. Bull. 96, pp. 155–159, (2017).

  11. 11.

    Y. Han, H. Yan, Y.-C. Tsai, Y. Li, Q. Zhang, H.-P.D. Shieh, Influences of nitrogen doping on the electrical characteristics of Indium-Zinc-Oxide thin film transistors. IEEE Trans. Device Mater. Reliab. 16, pp. 642–646, (2016).

  12. 12.

    S.J. Kim, S. Yoon, H.J. Kim, Review of solution-processed oxide thin-film transistors. Jpn. J. Appl. Phys. 53, p. 02BA02, (2014).

  13. 13.

    P.K. Nayak, J. Jang, C. Lee, Y. Hong, Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors. Appl. Phys. Lett. 95, p. 193503, (2009).

  14. 14.

    S.-Y. Han, M.-C. Nguyen, A.H.T. Nguyen, J.-W. Choi, J.-Y. Kim, R. Choi, Effect of Li-doping on low temperature solution-processed indium–zinc oxide thin film transistors. Thin Solid Films 641, pp. 19–23, (2017).

  15. 15.

    S.Y. Park, B.J. Kim, K. Kim, M.S. Kang, K.H. Lim, T.I. Lee, J.M. Myoung, H.K. Baik, J.H. Cho, Y.S. Kim, Low-temperature, solution‐processed and alkali metal doped ZnO for high‐performance thin‐film transistors. Adv. Mater. 24, pp. 834–838, (2012).

  16. 16.

    I.-H. Cho, H.-W. Park, K.-B. Chung, C.-J. Kim, B.-H. Jun, Influence of lithium doping on the electrical properties and ageing effect of ZnSnO thin film transistors. Semicond. Sci. Technol. 33, p. 085004, (2018).

  17. 17.

    S. Jeong, Y.G. Ha, J. Moon, A. Facchetti, T.J. Marks, Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution‐derived indium zinc oxide thin‐film transistors. Adv. Mater. 22, pp. 1346–1350, (2010).

  18. 18.

    J.G. Um, M. Mativenga, J. Jang, Mechanism of positive bias stress-assisted recovery in amorphous-indium-gallium-zinc-oxide thin-film transistors from negative bias under illumination stress. Appl. Phys. Lett. 103, p. 033501, (2013).

  19. 19.

    J. Dong, D. Han, H. Li, W. Yu, S. Zhang, X. Zhang, Y. Wang, Effect of Al doping on performance of ZnO thin film transistors. Appl. Surf. Sci. 433, pp. 836–839, (2018).

  20. 20.

    L. Yue, F. Meng, J. Chen, Effect of active-layer composition and structure on device performance of coplanar top-gate amorphous oxide thin-film transistors. Semicond. Sci. Technol. 33, p. 015012, (2017).

  21. 21.

    L.-C. Liu, J.-S. Chen, J.-S. Jeng, Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors. Appl. Phys. Lett. 105, p. 023509, (2014).

  22. 22.

    J. Zhang, J. Lu, Q. Jiang, B. Lu, X. Pan, L. Chen, Z. Ye, X. Li, P. Guo, N. Zhou, Stability of amorphous InAlZnO thin-film transistors. J. Vacuum Sci. Technol. B 32, p. 010602, (2014).

  23. 23.

    K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi, Amorphous ZnO–In2O3 transparent conductive films by simultaneous sputtering method of ZnO and In2O3 targets. Vacuum 66, pp. 505–509, (2002).

  24. 24.

    B. Li, H. Wang, D. Zhou, Z. Hu, H. Wu, Y. Peng, L. Yi, X. Zhang, Y. Wang, Effect of annealing temperature on the electrical properties of In–Zn–Li–O thin film transistors. Solid-State Electron. 111, pp. 18–21, (2015).

  25. 25.

    E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, pp. 2945–2986, (2012).

  26. 26.

    J.K. Jeong, H. Won Yang, J.H. Jeong, Y.-G. Mo, H.D. Kim, Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 93, p. 123508, (2008).

  27. 27.

    J. Zhang, X. Li, J. Lu, N. Zhou, P. Guo, B. Lu, X. Pan, L. Chen, Z. Ye, Water assisted oxygen absorption on the instability of amorphous InAlZnO thin-film transistors. RSC Adv. 4, pp. 3145–3148, (2014).

  28. 28.

    P.-T. Liu, Y.-T. Chou, L.-F. Teng, Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress. Appl. Phys. Lett. 95, p. 233504, (2009).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51772019).

Author information

Correspondence to Xiqing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Liu, D., Yang, H. et al. Investigation on the electrical properties of amorphous IZALO thin-film transistors. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03049-8

Download citation

Keywords

  • Thin film transistor
  • Oxide materials
  • Electrical properties
  • Subthreshold swing