Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis and study of structure and phase composition in Cu2–xS, SnxSy, ZnS, CuxSnSy and CuZnSnS pellets

  • 10 Accesses


Synthesis of pure single-phase Cu2ZnSnS4 (CZTS) has attracted much attention of some laboratories and investigation centers around the world. This is important in order to eliminate secondary phases which are detrimental to the final conversion efficiency of the CZTS solar cells. Pseudo-ternary phase diagram showed the formation of pure CZTS using the mixture of Cu2S, SnS2 and ZnS binary sulfides; nevertheless, the gap is very narrow. An additional problem lies in the effective determination of the CZTS purity, because some secondary phases display similar X-ray diffraction and Raman spectra as those of CZTS. The present work addresses a simple, fast and economical synthesis method for the preparation of some binary, ternary and CZTS pellets, which were prepared from their corresponding co-precipitated powders. These tablets can be used not only as a sputtering target but also as a precursor in a solid-state reaction. Among the various prepared compounds, Cu2−xS–SnxSy–ZnS and CuxSnSy are included and characterized to identify their presence in the CZTS pellets. From the obtained results, the usefulness of co-precipitation as a method to produce highly pure single-phase CZTS is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1

(Taken from Ref [1])

Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, Int. J. Photoenergy 2014, 11 (2014)

  2. 2.

    L.V. Piskach, I.D. Olekseyuk, I.V. Dudchak, J. Alloys Compd. 368, 135–143 (2004)

  3. 3.

    M. Ravindiran, C. Praveenkumar, Renew. Sustain. Energy. Rev 94, 317–329 (2018)

  4. 4.

    H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express 1, 041201 (2008)

  5. 5.

    S. Guha, K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, Appl. Phys. Lett. 97, 143508 (2010)

  6. 6.

    A.V. Moholkar, S.S. Shinde, A.R. Babar, K. Sim, H. Lee, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, J. Alloys Compd. 509, 7439–7446 (2011)

  7. 7.

    H. Araki, Y. Kubo, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Phys. Status. Solidi C 6, 5 (2009)

  8. 8.

    A. Wangperawong, J.S. King, S.M. Herron, B.P. Tran, K. Pangan-Okimoto, S.F. Bent, Thin Solid Films 519, 2488–2492 (2011)

  9. 9.

    K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Sol. Energy. Mater. Sol. Cells 95, 2855–2860 (2011)

  10. 10.

    Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, V.S. Raja, Phys. Status. Solidi A 206, 1525–1530 (2009)

  11. 11.

    M. Lerch, A. Ritscher, J. Just, O. Dolotko, S. Schorr, J. Alloys Compd. 670, 289–296 (2016)

  12. 12.

    H. Gong, Y. Wang, J. Electrochem. Soc. 158, 8 (2011)

  13. 13.

    G.L. Chen, W.H. Wang, P.Y. Lin, H.L. Cai, B.W. Chen, X.J. Huang, J.M. Zhang, S.Y. Chen, Z.G. Huang, Ceram. Int 44, 18408–18412 (2018)

  14. 14.

    A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, in Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, ed. by S.M. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Elsevier, New York, 2018), pp. 122–124

  15. 15.

    R. Nagarajan, P. Kumar, Inorg. Chem 50, 9204–9206 (2011)

  16. 16.

    S. Chaudhuri, S.K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya, Mater. Res. Bull 42, 576–583 (2007)

  17. 17.

    S.Y. Chu, H.Y. Lu, S.S. Tan, J. Cryst. Growth 269, 385–391 (2004)

  18. 18.

    V.S. Raja, U. Chalapathi, Y.B.K. Kumar, S. Uthanna, Thin Solid Films 556, 61–67 (2014)

  19. 19.

    G.A. Hope, C.G. Munce, G.K. Parker, S.A. Holt, Colloids. Surf A 295, 152–158 (2007)

  20. 20.

    J. Serrano, A. Canterero, M. Cordona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Phys. Rev. B 69, 014301 (2004)

  21. 21.

    P.A. Fernandes, P.M.P. Salomé, A.F. Cunha, J. Phys. D 43, 215403 (2010)

Download references


The authors would like to acknowledge to the research assistants Adolfo Tavira (X-ray measurements), Miguel Avendaño (Raman measurements) and Angel Guillén (EDS-SEM) but also Alvaro Guzmán (Laboratory technician). This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT Mexico) scholarship (336583) provided to Gómez-Solano studying at CINVESTAV-IPN.

Author information

Correspondence to J. S. Arias-Cerón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gómez-Solano, R.E., Arias-Cerón, J.S., Ríos-Ramírez, J.J. et al. Synthesis and study of structure and phase composition in Cu2–xS, SnxSy, ZnS, CuxSnSy and CuZnSnS pellets. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03045-y

Download citation