Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermoelectric properties of Bi0.4Sb1.6Te3-based composites with silicon nano-inclusions

  • 18 Accesses


Si/Bi0.4Sb1.6Te3 bulk composites have been prepared by combining mechanical alloying with spark plasma sintering, and their thermoelectric properties have been investigated in the temperature ranges from 298 K to 498 K. The results indicate that with silicon content increasing, the thermopower (S) of the composite system increases substantially. Simultaneously, silicon nano-inclusions cause significant reduction in thermal conductivity (κ) owing to the decreased electrical conductivity and the enhanced phonon scattering of nanoparticles as well as phase boundaries. For the 0.5 vol% Si/Bi0.4Sb1.6Te3 sample, S increases to 224.6 µV K−1 from 210.6 μV K−1 for the sample without silicon and κ decreases to 0.96 Wm−1 K−1 at 423 K from 1.07 Wm−1 K−1 for the sample without silicon, respectively. As a result, the highest ZT of 1.36 is obtained at 423 K of the 0.5 vol% Si/Bi0.4Sb1.6Te3 sample.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    J. He, T.M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward. Science 357, p. 6358, (2017).

  2. 2.

    L.-D. Gangjian Tan, Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, pp. 12123–12149, (2016).

  3. 3.

    T. Fang, X. Li, C. Hu, et al: Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions. Adv. Funct. Mater. 29, p. 1900677, (2019).

  4. 4.

    C.-C. Lin, D. Ginting, R. Lydia, M.H. Lee, J.-S. Rhyee, Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-doping and PbTe precipitation. J. Alloys Compd. 671, 538–544 (2016)

  5. 5.

    Y. Li, D. Li, X. Qin, X. Yang, Y. Liu, J. Zhang, Y. Dou, C. Song, H. Xin, Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu3SbSe4 nanoinclusions. J. Mater. Chem. C 3, 7045–7052 (2015)

  6. 6.

    T. Zhang, J. Jiang, Y. Xiao, Y. Zhai, S. Yang, G. Xu, Z. Ren, Effect of dehydrated-attapulgite nanoinclusions on the thermoelectric properties of BiSbTe alloys. RSC Adv. 3, 4951–4953 (2013)

  7. 7.

    C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3) 0.2(Sb2Te3)0.8 thermoelectric nanocomposite. J. Alloys Compd. 661, 389–395 (2016)

  8. 8.

    K. Ahmad, C. Wan, P. Zong, Thermoelectric properties of BiSbTe/graphene nanocomposites. J. Mater. Sci. 30, pp. 11923–11930, (2019).

  9. 9.

    J. Li, Q. Tan, J. Li, D. Liu, F. Li, Z. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23, 4317–4323 (2013)

  10. 10.

    Y.H. Yeo, T.S. Oh, Thermoelectric properties of p-type (Bi, Sb)2Te3 nanocomposites dispersed with multiwall carbon nanotubes. Mater. Res. Bull. 58, 54–58 (2014)

  11. 11.

    Y. Dou, X. Qin, D. Li, L. Li, T. Zou, Q. Wang, Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2 (Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles. J. Appl. Phys. 114, 044906 (2013)

  12. 12.

    Y. Dou, X. Qin, D. Li, Y. Li, H. Xin, J. Zhang, Y. Liu, C. Song, L. Wang, Enhanced thermoelectric performance of BiSbTe-based composites incorporated with amorphous Si3N4 nanoparticles. RSC Adv. 5, 34251–34256 (2015)

  13. 13.

    V.D. Blank, S.G. Buga, V.A. Kulbachinskii, V.G. Kytin, V.V. Medvedev, M.Yu. Popov, P.B. Stepanov, V.F. Skok, Thermoelectric properties of Bi0.5Sb1.5Te3/C 60 nanocomposites. Phys. Rev. B 86, 075426 (2012)

  14. 14.

    R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. Energy Environ. Sci. 11, 1520–1535 (2018)

  15. 15.

    A. Pakdel, Q. Guo, V. Nicolosi, T. Mori, Enhanced thermoelectric performance of Bi–Sb–Te/Sb2O3 nanocomposites by energy filtering effect. J. Mater. Chem. A 6, pp. 21341–21349, (2018).

  16. 16.

    S.M. Yoon, P. Dharmaiah, H.-S. Kim, C.H. Lee, S.-J. Hong, J.M. Koo, Investigation of thermoelectric properties with dispersion of Fe2O3 and Fe-85Ni nanospheres in Bi0.5Sb1.5Te3 matrix. J. Electron. Mater. 46, pp. 2770–2777, (2017).

  17. 17.

    J. Weber, M.I. Alonso, Near-band-gap photoluminescence of Si-Ge alloys. Phys. Rev. B 40, 5683 (1989)

  18. 18.

    X. Yang, X. Qin, J. Zhang, D. Li, H. Xin, M. Liu, Enhanced thermopower and energy filtering effect from synergetic scattering at heterojunction potentials in the thermoelectric composites with semiconducting nanoinclusions. J. Alloys Compd. 558, 203–211 (2013)

  19. 19.

    D.H. Kim, C. Kim, S.H. Heo, H. Kim, Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi–Te-based thermoelectric materials. Acta Mater. 59, 405–411 (2011)

  20. 20.

    D.L. Young, T.J. Coutts, V.I. Kaydanov, A.S. Gilmore, W.P. Mulligan, Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena. J. Vac. Sci. Technol. A 18, 2978 (2000)

  21. 21.

    J.H. Bahk, Z. Bian, A. Shakouri, Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys. Rev. B 87, p. 075204, (2013).

  22. 22.

    L. Zhao, H. Wu, S. Hao, C. Wu, X. Zhou, K. Biswas, J. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013)

Download references


Financial supports from the Natural Science Foundation of China under Grant no. 51672278 is greatly acknowledged.

Author information

Correspondence to Yunchen Dou or Di Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dou, Y., Yan, X., Du, Y. et al. Thermoelectric properties of Bi0.4Sb1.6Te3-based composites with silicon nano-inclusions. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03042-1

Download citation