Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

β-FeOOH catalyzed peroxymonosulfate for organic pollutant degradation in water: radical and non-radical mechanism

  • 3 Accesses

Abstract

Iron-based catalysts as peroxymonosulfate (PMS) activator are commonly used to oxidize and degrade azo dye. However, there are still some issues such as low catalytic performance, relatively less reactive oxygen species and high metal iron dissolution. As such, a novel iron oxyhydroxide (FeOOHs) with four crystal form was synthesized and employed as efficient PMS activator for AO7 degradation in this study. It was found that the crystal form of catalyst had significant influence on its catalytic performance. β-FeOOH exhibited the best catalytic performance, owing to its smallest lattice size, maximum specific surface area and highest surface hydroxyl density. β-FeOOH/PMS system possessed a great high apparent reaction rate constant (1.3919 h−1), which was about 17, 3, 31, 20, 14, 49 and 23 times higher than that in β-FeOOH/persulfate(PS), Fe0/PMS, Fe0/PS, Fe2O3/PMS, Fe2O3/PS, Fe3O4/PMS and Fe3O4/PS system, respectively. More importantly, radical quenching tests and Electron spin resonance (ESR) analysis revealed that OH., SO4.−, O2.− and 1O2 were involved in the reaction process. The catalytic mechanism proposed that β-FeOOH had the effective electron transfer rate performance, and Fe3+ underwent a reduction to Fe2+ during the β-FeOOH/PMS catalytic oxidation process. Then, the regeneration of Fe2+ on the hydroxylated surface of FeOOH promoted the formation of FeOH+, which was crucial for PMS activation and reactive oxygen species (ROS) generation. The recyclability tests proved good stability and reusability of β-FeOOH. This study provides a kind of new understanding of peroxymonosulfate activation for environmental remediation and advances the study of iron-based oxyhydroxide in heterogeneous catalysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    GP Anipsitakis DD Dionysiou 2004 Environ. Sci. Technol. 38 3705 3712

  2. 2.

    MG Antoniou AA Cruz De La DD Dionysiou 2010 Appl. Catal. B 96 290 298

  3. 3.

    DL Ball JO Edwards 1956 J. Am. Chem. Soc. 78 1125 1129

  4. 4.

    E Brillas CA Martinez-Huitle 2015 Appl. Catal. B 166 603 643

  5. 5.

    JM Burns WJ Cooper JL Ferry DW King BP Dimento 2012 Aquat. Sci. 74 683 734

  6. 6.

    C Cai L Wang H Gao L Hou H Zhang 2014 J. Environ. Sci. 26 1267 1273

  7. 7.

    C Cai H Zhang X Zhong L Hou 2015 J. Hazard. Mater. 283 70 79

  8. 8.

    J Deng Y Ge C Tan H Wang Q Li 2017 Chem. Eng. J. 330 1390 1400

  9. 9.

    M Ding W Chen H Xu Z Shen T Lin 2019 Chem. Eng. J. 378 122177

  10. 10.

    M Drosos M Ren FH Frimmel 2015 Appl. Catal. B 165 328 334

  11. 11.

    D. F. Evans, M. W. Upton, Chem. Inf. 16, (1985)

  12. 12.

    DF Evans MW Upton 1985 J. Chem. Soc. Dalton Trans. 6 1151 1153

  13. 13.

    Y Fu C Chang P Chen X Chu L Zhu 2013 J. Hazard. Mater. 254 185 192

  14. 14.

    F Ghanbari M Moradi 2017 Chem. Eng. J. 310 41 62

  15. 15.

    YJ Hao FT Li C Fang MJ Chai RH Liu XJ Wang 2014 Mater. Lett. 124 1 3

  16. 16.

    X Haodan W Da M Jun Z Tao L Xiaohui C Zhiqiang 2018 Appl. Catal. B 238 557 567

  17. 17.

    Y-H Jo S-H Hong T-J Park S-H Do 2014 Appl. Surf. Sci. 301 576 583

  18. 18.

    T Jurkin G Štefanić G Dražić M Gotić 2016 Mater. Lett. 173 55 59

  19. 19.

    EW Kellogg I Fridovich 1975 J. Biol. Chem. 250 8812 8817

  20. 20.

    H Li J Wan Y Ma Y Wang M Huang 2014 Chem. Eng. J. 237 487 496

  21. 21.

    X Li J Liu AI Rykov H Han C Jin 2015 Appl. Catal. B 179 196 205

  22. 22.

    X Li H Yong L Cong J Shen D Yang 2015 Chem. Eng. J. 260 28 36

  23. 23.

    X Li M Zhou Y Pan L Xu 2017 Chem. Eng. J. 307 1092 1104

  24. 24.

    J Liu J Zhou Z Ding Z Zhao X Xu Z Fang 2017 Ultrason. Sonochem. 34 953 959

  25. 25.

    MA Marsooli M Fasihi-Ramandi K Adib S Pourmasoud F Ahmadi 2019 Materials 12 3274

  26. 26.

    AM Mesquita IR Guimarães GMMD Castro MA Gonçalves TC Ramalho MC Guerreiro 2016 Appl. Catal. B 192 286 295

  27. 27.

    W-D Oh Z Dong T-T Lim 2016 Appl. Catal. B 194 169 201

  28. 28.

    O Oputu M Chowdhury K Nyamayaro O Fatoki V Fester 2015 J. Environ. Sci. 35 83 90

  29. 29.

    Y Rao Y Zhang F Han H Guo Y Huang 2018 Chem. Eng. J. 352 601 611

  30. 30.

    Y Ren L Lin J Ma J Yang J Feng Z Fan 2015 Appl. Catal. B 165 572 578

  31. 31.

    NS Shah X He HM Khan JA Khan KE O'shea 2013 J. Hazard. Mater. 263 584 592

  32. 32.

    M Sheydaei A Khataee 2015 Ultrason. Sonochem. 27 616 622

  33. 33.

    C Tan N Gao D Fu D Jing D Lin 2017 Sep. Purif. Technol. 175 47 57

  34. 34.

    Z Tao W Li JP Croué 2012 Appl. Catal. B 121–122 88 94

  35. 35.

    J Wang X Gao F Fu L Zhang Y Wu 2012 J. Res. Sci. Technol. 9 101 106

  36. 36.

    Y Wang Y Xie H Sun J Xiao H Cao S Wang 2016 ACS Appl. Mater. Interfaces 8 9710 9720

  37. 37.

    Z Wang R Yuan Y Guo X Lei J Liu 2011 J. Hazard. Mater. 190 1083 1087

  38. 38.

    L Wanpeng Z Honghua C Beipei L Kunde G Jay 2011 Water Res. 45 1872 1878

  39. 39.

    H Xu D Wang J Ma T Zhang X Lu Z Chen 2018 Appl. Catal. B 238 557 567

  40. 40.

    J Xu Y Li B Yuan C Shen M Fu 2016 Chem. Eng. J. 291 174 183

  41. 41.

    Y Xu B Chen J Nie G Ma 2019 Appl. Surf. Sci. 495 143577

  42. 42.

    Z Xu Y Yu D Fang J Xu J Liang L Zhou 2015 Ultrason. Sonochem. 27 287 295

  43. 43.

    Y Yang JJ Pignatello J Ma WA Mitch 2014 Environ. Sci. Technol. 48 2344 2351

  44. 44.

    Y Yi JJ Pignatello M Jun WA Mitch 2014 Environ. Sci. Technol. 48 2344

  45. 45.

    J Zhang Z Xu Y Wang G Yan C Di Q Meng 2018 Appl. Catal. B 237 976 985

  46. 46.

    J Zhang X Zhao Y Wang Y Gong D Cao M Qiao 2018 Appl. Catal. B 237 976 985

  47. 47.

    J Zhao J Nan Z Zhao L Ning L Jie F Cui 2017 Appl. Catal. B 202 509 517

  48. 48.

    J Zhou J Xiao D Xiao Y Guo C Fang 2015 Chemosphere 134 446 451

  49. 49.

    HY Zhu R Jiang YQ Fu JH Jiang L Xiao GM Zeng 2011 Appl. Surf. Sci. 258 1337 1344

Download references

Acknowledgements

The present work was funded by the Natural Science Foundation of Jilin Provincial Science & Technology Department (Grant No. 20180101081JC), the Science and Technology Project of the Education Department of Jilin Province (Grant No. JJKH20190125KJ), and the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (RERU2018014) and 111 project (Grant No. B16020).

Author information

Correspondence to Cong Lyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1560 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyu, C., Ju, L., Yang, X. et al. β-FeOOH catalyzed peroxymonosulfate for organic pollutant degradation in water: radical and non-radical mechanism. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03041-2

Download citation