Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Highly photoresponsive VO2(M1) thin films synthesized by DC reactive sputtering

Abstract

We report synthesis, characterization and IR photoresponse properties of 150 ± 10 nm thick high quality VO2(M1) thin films synthesized by DC reactive sputtering. Phase formation was confirmed by X-ray diffraction and Raman spectroscopic measurements. Morphology and microstructure were analysed by atomic force microscope, scanning electron microscope and transmission electron microscope which revealed polycrystalline nature of nanosized films with root mean square (rms) roughness value of 8 ± 0.7 nm. Electrical measurements revealed 1st order transition of thin films with a change in resistance of more than two orders of magnitude and temperature coefficient of resistance, TCR of − 1.24% K−1 at 30 °C. The fabricated VO2(M1) IR photodetector exhibited excellent reproducible photoresponse properties when subjected to a 1064 nm laser under 250 mW cm−2 power density with a bias voltage of 5 V at the ambient conditions of temperature and pressure. The sensitivity, responsivity, external quantum efficiency and specific detectivity were observed to be 1775%, 40.09 mA W−1, 4.67% and 7.07 × 1011 Jones, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    C. Wu, F. Feng, Y. Xie, Chem. Soc. Rev. 42, 5157 (2013)

  2. 2.

    J. Nag, R.F. Haglund, J. Phys. Condens. Matter 20, 264016 (2008)

  3. 3.

    Y. E. & J.J.A.-G.C.L. Gomez-Heredia, J.A. Ramirez-Rincon, D. Bhardwaj, P. Rajasekar, I.J. Tadeo, J.L. Cervantes-Lopez, J. Ordonez-Miranda, O. Ares, A.M. Umarji, J. Drevillon, K. Joulain, Sci. Rep. 9, 1 (2019)

  4. 4.

    A. Zylbersztejn, N.F. Mott, Phys. Rev. B 11, 4383 (1975)

  5. 5.

    G. Stefanovich, A. Pergament, D. Stefanovich, J. Phys. Condens. Matter 12, 8837 (2000)

  6. 6.

    H. Choi, J. Ahn, J. Jung, T. Noh, D. Kim, Phys. Rev. B 54, p. 4621, (1996).

  7. 7.

    D. Ruzmetov, D. Heiman, B.B. Claflin, V. Narayanamurti, S. Ramanathan, Phys. Rev. B 79, 10 (2009)

  8. 8.

    M. Liu, H.Y. Hwang, H. Tao, A.C. Strikwerda, K. Fan, G.R. Keiser, A.J. Sternbach, K.G. West, S. Kittiwatanakul, J. Lu, S.A. Wolf, F.G. Omenetto, X. Zhang, K.A. Nelson, R.D. Averitt, Nature 487, 345 (2012)

  9. 9.

    J.M. Wu, L.B. Liou, J. Mater. Chem. 21, 5499 (2011)

  10. 10.

    Z. Zhang, Y. Gao, Z. Chen, J. Du, C. Cao, L. Kang, H. Luo, Langmuir 26, 10738 (2010)

  11. 11.

    Y. Hu, C.H. Lin, S. Min, R.L. Smith, S. Roberts, J. Optoelectron. Mater. Eng. 8, 345 (2017)

  12. 12.

    B. Wang, J. Lai, H. Li, H. Hu, S. Chen, Infrared Phys. Technol. 57, 8 (2013)

  13. 13.

    I.J. Tadeo, E.P. Mukhokosi, S.B. Krupanidhi, A.M. Umarji, RSC Adv. 9, 9983 (2019)

  14. 14.

    A. Rúa, F.E. Fernández, N. Sepúlveda, J. Appl. Phys. 107, 1 (2010)

  15. 15.

    J. Hou, B. Wang, Z. Ding, R. Dai, Z. Wang, Z. Zhang, J. Zhang, Appl. Phys. Lett. 111, 072107 (2017)

  16. 16.

    J. Hou, Z. Wang, Z. Ding, Z. Zhang, J. Zhang, Sol. Energy Mater. Sol. Cells 176, 142 (2018)

  17. 17.

    J.S. Dam, P. Tidemand-lichtenberg, C. Pedersen, Nat. Photonics 6, 788 (2012)

  18. 18.

    S.F. Tedde, J. Fu, M.V. Kovalenko, T. Rauch, M. Bo, U. Lemmer, W. Heiss, O. Hayden, Nat. Photonics 3, 332 (2009)

  19. 19.

    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, p. 643, (2012).

  20. 20.

    S.A. Mcdonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Nat. Mater. 4, 138 (2005)

  21. 21.

    Z. Li, Z. Hu, J. Peng, C. Wu, Y. Yang, F. Feng, P. Gao, J. Yang, Y. Xie, Adv. Funct. Mater. 24, 1821 (2014)

  22. 22.

    M. Shahid, J. Cheng, T. Li, M.A. Khan, Y. Wang, Y. Hu, M. Zhang, J. Yang, H.S. Aziz, C. Wan, H. Nishijima, W. Pan, J. Mater. Chem. C 6, 6510 (2018)

  23. 23.

    K.K.N. Mukhokosi, P. Emma, Phys. Status Solidi (A) 215, p. 1800470, (2018).

  24. 24.

    and Y.X. Changzheng Wu, J. Dai, X. Zhang, J. Yang, F. Qi, C. Gao, Angew. Chem. 122, 138 (2010)

  25. 25.

    F.H. Chen, L.L. Fan, S. Chen, G.M. Liao, Y.L. Chen, P. Wu, L. Song, C.W. Zou, Z.Y. Wu, ACS Appl. Mater. Interfaces 7, 6875 (2015)

  26. 26.

    J. Yoon, H. Kim, X. Chen, N. Tamura, B.S. Mun, C. Park, H. Ju, ACS Appl. Mater. Interfaces 8, 2280 (2016)

  27. 27.

    J. Jian, X. Wang, L. Li, M. Fan, W. Zhang, J. Huang, Z. Qi, H. Wang, ACS Appl. Mater. Interfaces 9, 5319 (2017)

  28. 28.

    D.H. Kim, H.S. Kwok, Appl. Phys. Lett. 65, 3188 (1994)

  29. 29.

    D. Bhardwaj, A. Goswami, A.M. Umarji, J. Appl. Phys. 124, 135301 (2018)

  30. 30.

    D. Ruzmetov, K.T. Zawilski, S.D. Senanayake, V. Narayanamurti, S. Ramanathan, J. Phys. Condens. Matter 20, 465204 (2008)

  31. 31.

    M. Soltani, S. Toubou, R. Karmouch, J. Mater. Sci. Mater. Electron. 30, 1 (2019)

  32. 32.

    F. Ureña-Begara, A. Crunteanu, J.P. Raskin, Appl. Surf. Sci. 403, 717 (2017)

  33. 33.

    Y. Ningyi, L. Jinhua, L. Chenglu, Appl. Surf. Sci. 191, 176 (2002)

  34. 34.

    C.S. Blackman, C. Piccirillo, R. Binions, I.P. Parkin, Thin Solid Films 517, 4565 (2009)

  35. 35.

    B.W. Mwakikunga, E. Sideras-Haddad, M. Maaza, Opt. Mater. 29, p. 481, (2007).

  36. 36.

    M. Benkahoul, M.K. Zayed, A. Solieman, S.N. Alamri, J. Alloys Compd. 704, 760 (2017)

  37. 37.

    M.M. Margoni, S. Mathuri, K. Ramamurthi, R.R. Babu, K. Sethuraman, Thin Solid Films 606, 51 (2016)

  38. 38.

    M. Li, S. Ji, J. Pan, H. Wu, L. Zhong, Q. Wang, J. Mater. Chem. A 2, 20470 (2014)

  39. 39.

    M. Wan, B. Liu, S. Wang, L. Hu, Y. He, H. Tao, X. Zhao, J. Alloys Compd. 706, 289 (2017)

  40. 40.

    Z. Yang, C. Ko, S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011)

  41. 41.

    C. L. and G. Nihoul, Phys. Rev. B 57, 5111 (1997)

  42. 42.

    S. Lee, I.N. Ivanov, J.K. Keum, H.N. Lee, Sci. Rep. 6, 1 (2016)

  43. 43.

    R. Bharathi, R. Naorem, A.M. Umarji, J. Phys. D Appl. Phys. 48, 305103 (2015)

  44. 44.

    R. Baddour-Hadjean, V. Golabkan, J.P. Pereira-Ramos, A. Mantoux, D. Lincot, J. Raman Spectrosc. 33, 631 (2002)

  45. 45.

    M. Castriota, E. Cazzanelli, A. Fasanella, D. Teeters, Thin Solid Films 553, 127 (2014)

  46. 46.

    S.H. Lee, H.M. Cheong, M.J. Seong, P. Liu, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Solid State Ionics 165, 111 (2003)

  47. 47.

    Q. Su, C.K. Huang, Y. Wang, Y.C. Fan, B.A. Lu, W. Lan, Y.Y. Wang, X.Q. Liu, J. Alloys Compd. 475, 518 (2009)

  48. 48.

    L. Abello, E. Husson, Y. Repelin, G. Lucazeau, Spectrochim. Acta 39A, 641 (1983)

  49. 49.

    P. Schilbe, Phys. B 316–317, 600 (2002)

  50. 50.

    C. Chen, R. Wang, L. Shang, C. Guo, Appl. Phys. Lett. 93, 2 (2008)

  51. 51.

    F.D. Hardcastle, I.E. Wachs, J. Raman Spectrosc. 21, 683 (1990)

  52. 52.

    S. Dou, Y. Wang, X. Zhang, Y. Tian, X. Hou, J. Wang, X. Li, J. Zhao, Y. Li, Sol. Energy Mater. Sol. Cells 160, 164 (2017)

  53. 53.

    F.J. Morin, Phys. Rev. Lett. 3, 34 (1959)

  54. 54.

    N. Chi-Anh, H.J. Shin, K. Kim, Y.H. Han, S. Moon, Sens. Actuators A 123–124, p. 87, (2005).

  55. 55.

    B.D. Gauntt, E.C. Dickey, M.W. Horn, J. Mater. Res. 24, 1590 (2009)

  56. 56.

    W. Lixia, L.I. Jianping, G.A.O. Xiaoguang, H.E. Xiuli, Prog. Nat. Sci. 16, 1193 (2006)

  57. 57.

    Z. Yang, S. Hart, C. Ko, A. Yacoby, S. Ramanathan, J. Appl. Phys. 110, 033725 (2011)

  58. 58.

    Z. Jia, J. Xiang, F. Wen, R. Yang, C. Hao, Z. Liu, ACS Appl. Mater. Interfaces 8, 4781 (2016)

  59. 59.

    E.P. Mukhokosi, S.B. Krupanidhi, K.K. Nanda, Sci. Rep. 7, 15215 (2017)

  60. 60.

    W.B. Fu, G.L. Shang, X.X. Gong, L. De Zhang, G.T. Fei, J. Mater. Chem. C 5, 1471 (2017)

  61. 61.

    C. Ko, Z. Yang, S. Ramanathan, ACS Appl. Mater. Interfaces 3, 3396 (2011)

  62. 62.

    G. Xu, C.-M. Huang, M. Tazawa, P. Jin, D.-M. Chen, L. Miao, Appl. Phys. Lett. 93, 061911 (2008)

  63. 63.

    H. Zhou, X. Cao, M. Jiang, S. Bao, P. Jin, Laser Photonics Rev. 8, 617 (2014)

  64. 64.

    L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S.T. Lee, Adv. Funct. Mater. 25, 2910 (2015)

  65. 65.

    B. Murali, S.B. Krupanidhi, J. Appl. Phys. 114, 144312 (2013)

  66. 66.

    L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S.P. Lau, Y.H. Tsang, Sci. Rep. 6, 20343 (2016)

  67. 67.

    H. Deng, X. Yang, D. Dong, B. Li, D. Yang, S. Yuan, K. Qiao, Y.B. Cheng, J. Tang, H. Song, Nano Lett. 15, 7963 (2015)

  68. 68.

    W. Feng, J. Bin Wu, X. Li, W. Zheng, X. Zhou, K. Xiao, W. Cao, B. Yang, J.C. Idrobo, L. Basile, W. Tian, P.H. Tan, P.A. Hu, J. Mater. Chem. C 3, 7022 (2015)

  69. 69.

    W. Choi, M.Y. Cho, A. Konar, J.H. Lee, G.B. Cha, S.C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, S. Kim, Adv. Mater. 24, p. 5832, (2012).

Download references

Acknowledgements

Authors greatly acknowledge Division of Chemical Sciences, Indian Institute of Science, Bengaluru for providing TEM facility. Micro and Nano Characterization Facility (MNCF) at Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bengaluru is highly acknowledged for providing XPS facility. The authors would also like to thank FIST for providing funds for XRD facilities. Inyalot Jude Tadeo offers heartfelt gratitude to the Office of International Relations (OIR), Indian Institute of Science, Bengaluru for granting him Ph.D. scholarship. Devanshi Bhardwaj thanks CSIR for providing Ph.D. scholarship. Saluru B. Krupanidhi acknowledges Fellowship Grant from Indian National Science Academy.

Author information

Correspondence to Arun M. Umarji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tadeo, I.J., Bhardwaj, D., Sheela, D. et al. Highly photoresponsive VO2(M1) thin films synthesized by DC reactive sputtering. J Mater Sci: Mater Electron 31, 4687–4695 (2020). https://doi.org/10.1007/s10854-020-03023-4

Download citation