Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

CdS nanorods decorated with ultrathin MoS2 nanosheets for efficient visible-light photocatalytic H2 production

Abstract

A binary composite photocatalyst MoS2/CdS was synthesized by a modified solvothermal method. The composites show higher photogenerated electron transfer rate and stronger photocatalytic performance. The structure and morphology were characterized by different methods. It was found that the composites consist of by core–shell structure. And the MoS2 nanosheets are ultrathin and exposed to a large number of edge positions, which is beneficial to improve carrier transport efficiency. Further findings show that the more reactive sites are on the nannosheets, the more hydrogen will be produced. UV–Vis, PL and transient photocurrent analysis showed that the catalyst effectively inhibit the recombination of photogenerated electrons and holes. Hydrogen production experiment indicates the best photocatalytic performance appears when the loading of MoS2 is 8wt%, and the rate of hydrogen production is about 5200 μmol g−1 h−1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    X.H. Qian, J.Y. Zhang, Z. Guo, S.Z. Liu, J.X. Liu, J. Lin, Facile ultrasound-driven formation and deposition of few-layered MoS2 nanosheets on CdS for highly enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci. 481, 795–801 (2019)

  2. 2.

    L.N. Tie, R.Y. Sun, H. Jiang, Y.M. Liu, Y. Xia, Y.Y. Li, H. Chen, C.F. Yu, S.Y. Dong, J.Y. Sun, J.H. Sun, Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H2 production. J. Alloy Compd. 807, 151670 (2019)

  3. 3.

    L. Shi, F.X. Wang, J.M. Sun, The preparation of spherical mesoporous g-C3N4 with highly improved photocatalytic performance for H2 production and rhodamine B degradation. Mater. Res. Bull. 113, 115–121 (2019)

  4. 4.

    Y.D. Luo, B. Deng, Y. Pu, A.N. Liu, J.M. Wang, K.L. Ma, F. Gao, B. Gao, W.X. Zou, L. Dong, Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation. J. Alloy Compd. 809, 151805 (2019)

  5. 5.

    Z.Q. Chen, P.X. Xing, P.F. Chen, Q.Q. Chen, Y. Wang, J.X. Yu, Y.M. He, Synthesis of carbon doped KTaO3 and its enhanced performance in photocatalytic H2 generation. Catal. Commun. 109, 6–9 (2018)

  6. 6.

    Y.D. Luo, B. Deng, Y. Pu, A.N. Liu, J.M. Wang, K.L. Ma, F. Gao, B. Gao, W.X. Zou, L. Dong, Binder-free WS2/ZrO2 hybrid as a photocatalyst for organic pollutant degradation under UV/simulated sunlight and tests for H2 evolution. Appl. Catal. B 247, 1–9 (2019)

  7. 7.

    Y. Li, L.L. Wang, T. Cai, S.Q. Zhang, Y.T. Liu, Y.Z. Song, X.R. Dong, L. Hu, Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 321, 366–374 (2017)

  8. 8.

    X.L. Yin, L.L. Li, D.C. Li, Z.J. Li, Y.X. Wang, X.J. Kong, J.S. Zhao, J.H. Jiang, J.C. Qian, D.H. Pang, X.X. Du, J.M. Dou, Noble-metal-free CdS@MoS2 core-shell nanoheterostructures for efficient and stabilized visible-light-driven H2 generation. Int. J. Hydrog. Energy 44, 16657–16666 (2019)

  9. 9.

    Y.Y. Liu, C.M. Zeng, L.H. Ai, J. Jiang, Boosting charge transfer and hydrogen evolution performance of CdS nanocrystals hybridized with MoS2 nanosheets under visible light irradiation. Appl. Surf. Sci. 484, 692–700 (2019)

  10. 10.

    S. Ma, J. Xie, J.Q. Wen, K.L. He, X. Li, W. Liu, X.C. Zhang, Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation. Appl. Surf. Sci. 391, 580–591 (2017)

  11. 11.

    L.L. Zhao, J. Jia, Z.Y. Yang, J.Y. Yu, A.L. Wang, Y.H. Sang, W.J. Zhou, H. Liu, One-step synthesis of CdS nanoparticles/MoS2 nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H2 evolution. Appl. Catal. B 210, 290–296 (2017)

  12. 12.

    S.W. Zhang, H.C. Yang, H.H. Gao, R.Y. Cao, J.Z. Huang, X.J. Xu, One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 9, 23635–23646 (2017)

  13. 13.

    R.K. Chava, J.Y. Do, M. Kang, Hydrothermal growth of two dimensional hierarchical MoS2 nanospheres on one dimensional CdS nanorods for high performance and stable visible photocatalytic H2 evolution. Appl. Surf. Sci. 433, 240–248 (2018)

  14. 14.

    C. Feng, Z.Y. Chen, J. Hou, J.R. Li, X.B. Li, L.K. Xu, M.X. Sun, R.C. Zeng, Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem. Eng. J. 345, 404–413 (2018)

  15. 15.

    L.L. Li, X.L. Yin, Y.Q. Sun, Facile synthesized low-cost MoS2/CdS nanodots-on-nanorods heterostructures for highly efficient pollution degradation under visible light irradiation. Sep. Purif. Technol. 212, 135–141 (2019)

  16. 16.

    X.L. Yin, G.Y. He, B. Sun, W.J. Jiang, D.J. Xue, A.D. Xia, L.J. Wan, J.S. Hu, Rational design and electron transfer kinetics of MoS2/CdS nanodots-on-nanorods for efficient visible-light-driven hydrogen generation. Nano Energy 28, 319–329 (2016)

  17. 17.

    X.L. Yin, L.L. Li, W.J. Jiang, Y. Zhang, X. Zhang, L.J. Wan, J.S. Hu, MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic h2 generation under visible light irradiation. ACS Appl. Mater. Interfaces 8, 15258–15266 (2016)

  18. 18.

    D. Praveen Kumar, M. I. Song, S. Hong, E. H. Kim, M. Gopannagari, D. A. Reddy, T. K. Kim, Optimization of active sites of MoS2 nanosheets using nonmetal doping and exfoliation into few layers on CdS nanorods for enhanced photocatalytic hydrogen production. ACS Sustain. Chem. Eng. 5 7651–7658 (2017)

  19. 19.

    B. Han, S.Q. Liu, N. Zhang, Y.J. Xu, Z.R. Tang, One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Appl. Catal. B 202, 298–304 (2017)

  20. 20.

    J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C.T. Au, S.F. Yin, CdS Nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution. Chemsuschem 9, 624–630 (2016)

  21. 21.

    H.F. Lin, Y.Y. Li, H.Y. Li, X. Wang, Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Res. 10, 1377–1392 (2017)

  22. 22.

    H.M. Wang, S.B. Naghadeh, C.H. Li, L. Ying, A. Allen, J.Z. Zhang, Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Sci. China Mater. 61, 839–850 (2018)

  23. 23.

    Y. Yang, Y. Zhang, Z.B. Fang, L.L. Zhang, Z.Y. Zheng, Z.F. Wang, W.H. Feng, S.X. Weng, S.Y. Zhang, P. Liu, Simultaneous realization of enhanced photoactivity and promoted photostability by mutilayered-MoS2-coating on CdS nanowire structure via compactly coating methodology. Appl. Mater. Interfaces 9, 6950–6958 (2017)

  24. 24.

    Z.W. Zhang, Q.H. Li, X.Q. Qiao, D.F. Hou, D.S. Li, One-pot hydrothermal synthesis of willow branch-shaped MoS2/CdS heterojunctions for photocatalytic H2 production under visible light irradiation. Chin. J. Catal. 40, 371–379 (2019)

  25. 25.

    D. Lang, T.T. Shen, Q.J. Xiang, Roles of MoS2 and graphene as cocatalysts in the enhanced visible-light photocatalytic H2 production activity of multiarmed CdS nanorods. ChemCatChem 7, 943–951 (2015)

  26. 26.

    Y. Liu, H.T. Niu, W. Gu, X.Y. Cai, B.D. Mao, D. Li, W.D. Shi, In-situ construction of hierarchical CdS/MoS2 microboxes for enhancedvisible-light photocatalytic H2 production. Chem. Eng. J. 339, 117–124 (2018)

  27. 27.

    H.Y. Tian, J.T. Liang, X.L. Ma, L.L. Cao, X.Y. Hu, M.T. Gao, H.M. Yang, Z.H. Liang, Enhanced photoelectrocatalytic H2 evolution over two-dimensional MoS2 nanosheets loaded on Cu-doped CdS nanorods. ChemElectroChem 6, 714–723 (2019)

  28. 28.

    Y. X. Tang, D. F. Zhang, X. X. Qiu, L. Zeng, B. X. Huang, H. Li, X. P. Pu, Y. L. Geng, Fabrication of a NiCo2O4/Zn0.1Cd0.9S p-n heterojunction photocatalyst with improved separation of charge carriers for highly efficient visible light photocatalytic H2 evolution, J. Alloy Compd. 809, 151855 (2019)

  29. 29.

    L. Ren, F. Yan, Y.R. Deng, N.N. Yan, S. Huang, D. Lei, Q. Sun, Y. Yu, Synthesis of (CuIn)xCd2(1–x)S2 photocatalysts for H2 evolution under visible light by using a low-temperature hydrothermal method. Int. J. Hydrog. Energy 35, 3297–3305 (2010)

  30. 30.

    A.P. Wu, C.G. Tian, Y.Q. Jiao, Q. Yan, G.Y. Yang, H.G. Fu, Sequential two-step hydrothermal growth of MoS2/CdS core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl. Catal. B 203, 955–963 (2017)

  31. 31.

    L.L. Zhang, H.W. Zhang, C.K. Jiang, J. Yuan, X.Y. Huang, P. Liu, W.H. Feng, Z-scheme system of WO3@MoS2/CdS for photocatalytic evolution H2:MoS2 as the charge transfer mode switcher, electron-hole mediator and cocatalyst. Appl. Catal. B 259, 118073 (2019)

  32. 32.

    A. Petala, D. I. Kondarides Photocatalytic, hydrogen production over mixed Cd-Zn sulfide catalysts promoted with nickel or nickel phosphide. Catal. Today. (2019). https://doi.org/10.1016/j.cattod.2019.03.036

  33. 33.

    R. Chen, P.F. Wang, J. Chen, C. Wang, Y.H. Ao, Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation. Appl. Surf. Sci. 473, 11–19 (2019)

  34. 34.

    H.L. Zhou, Y.C. Liu, L. Zhang, H.D. Li, H. Liu, W.J. Li, Transition metal-doped amorphous molybdenum sulfide/graphene ternary cocatalysts for excellent photocatalytic hydrogen evolution: synergistic effect of transition metal and grapheme. J. Colloid Interface Sci. 533, 287–296 (2019)

  35. 35.

    M.B. Ali, W.K. Jo, H. Elhouichet, R. Boukherroub, Reduced graphene oxide as an efficient support for CdS-MoS2 heterostructures for enhanced photocatalytic H2 evolution. Int. J. Hydrog. Energy 42, 16449–16458 (2017)

  36. 36.

    X.L. Yin, L.L. Li, M.L. Liu, D.C. Li, L. Shang, J.M. Dou, MoSx/CdS nano-heterostructures accurately constructed on the defects of CdS for efficient photocatalytic H2 evolution under visible light irradiation. Chem. Eng. J. 370, 305–313 (2019)

  37. 37.

    X.H. Zhang, N. Li, J.J. Wu, Y.Z. Zheng, X. Tao, Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects. Appl. Catal. B 229, 227–236 (2018)

  38. 38.

    B. Han, S. Liu, N. Zhang, Y.J. Xu, Z.R. Tang, One-dimensional CdS@ MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible ligh. Appl. Catal. B 202, 298–304 (2017)

  39. 39.

    L. Li, X. Yin, Y. Sun, Facile synthesized low-cost MoS2/CdS nanodots-on-nanorods heterostructures for highly efficient pollution degradation under visiblelight irradiation. Sep. Purif. Technol. 212, 135–141 (2019)

Download references

Acknowledgements

This work is supported by the Key basic research projects Project of Hebei Province (18961031D), the science and technology research project of He bei's colleges and university (No. BJ 2017035), the Science and Technology Research and Development Program of Hebei Province, Zhangjiakou city (17120011D) and the Doctoral Foundation of Hebei North University (12995557).

Author information

Correspondence to Ye Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Mao, W., Liu, J. et al. CdS nanorods decorated with ultrathin MoS2 nanosheets for efficient visible-light photocatalytic H2 production. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03008-3

Download citation