Advertisement

The photoluminescence adjustment of red phosphors ANaWO2F4:Mn4+ (A = Li, Na, K) by suitable tolerance factor designing

  • Meiqing Hu
  • Zhifu Liu
  • Yujuan Xia
  • Ganghua Zhang
  • Yongzheng FangEmail author
  • Yufeng Liu
  • Guoying Zhao
  • Jingshan HouEmail author
Article
  • 14 Downloads

Abstract

Mn4+-activated perovskite-structured ANaWO2F4 (A = Li, Na, K) red phosphors were successfully prepared by a facile co-precipitation method. By changing the A-site ions, the tolerance factor (t) of host material ANaWO2F4 became adjustable. Red emissions in LiNaWO2F4:Mn4+, Na2WO2F4:Mn4+ and KNaWO2F4:Mn4+ were found to be gradually increased. The relationship between the structure and their photoluminescence properties was discussed. The results suggested that a t-dependent photoluminescence behavior may exist in perovskite-structured phosphors. As the tolerance factor increases, the emission intensity of ANaWO2F4 (A = Li, Na, K) red phosphors increases. This work also provides a reference for the exploration and optimization of Mn4+-activated perovskite-structured red phosphors.

Notes

Acknowledgements

Meiqing Hu and Zhifu Liu have equally contributed to this work. This work is financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51672177, 51902203, 61605115), Program of Shanghai Academic/Technology Research Leader (19XD1434700).

References

  1. 1.
    Q. Zhang, X. Wang, X. Ding, Y. Wang, A potential red-emitting phosphor BaZrGe3O9:Eu3+ for WLED and FED applications: synthesis, structure, and luminescence properties. Eur. J. Inorg. Chem. 56, 6990 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Huang, Y. Liu, J. Yu, Y. Zhu, F. Pan, T. Xuan, M.G. Brik, C. Wang, J. Wang, Highly stable K2SiF6:Mn4+@K2SiF6 composite phosphor with narrow red emission for white LEDs. ACS Appl. Mater. 10, 18082 (2018)CrossRefGoogle Scholar
  3. 3.
    J.S. Hou, W.Z. Jiang, Y.Z. Fang, F.Q. Huang, Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2:Ce3+, Eu2+, Eu3+ phosphor. J. Mater. Chem. C 1, 5892 (2013)CrossRefGoogle Scholar
  4. 4.
    P.F. Li, L. Wondraczek, M.Y. Peng, Q.Y. Zhang, Tuning Mn4+ red photoluminescence in (K, Rb)2Ge4O9:Mn4+ solid solutions by partial alkali substitution. A Setlur. J. Am. Ceram. Soc. 99, 3376 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Wang, H.R. Zhang, Y.L. Liu, H.W. Dong, B.F. Lei, M.T. Zheng, Y. Xiao, M.Y. Peng, J. Wang, Insights into luminescence quenching and detecting trap distribution in Ba2Si5N8:Eu2+ phosphor with comprehensive considerations of temperature-dependent luminescence behaviors. J. Mater. Chem. C 3, 9572 (2015)CrossRefGoogle Scholar
  6. 6.
    M.H. Fang, W.L. Wu, Y. Jin, Y. Jin, T. Lesniewski, S. Mahlik, M. Grinberg, M.G. Brik, Control of luminescence by tuning of crystal symmetry and local structure in Mn4+-activated narrow band fluoride phosphors. Angew. Chem. Int. Ed. 57, 1797 (2018)CrossRefGoogle Scholar
  7. 7.
    E. Song, Y. Zhou, X.B. Yang, Z. Liao, W. Zhao, T. Deng, L. Wang, Y. Ma, S. Ye, Q. Zhang, Highly efficient and stable narrow-band red phosphor Cs2SiF6:Mn4+ for high-power warm white LED applications. ACS Photon. 4, 2556 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Lv, C. Zhen, G. Liu, S. Huang, Y. Pan, Optimized photoluminescence of red phosphor K2TiF6:Mn4+ synthesized at room temperature and its formation mechanism. J. Mater. Chem. C 3, 1935 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Wei, C.C. Lin, Y. Wang, M. Fang, H. Jiao, R. Liu, Photoluminescent evolution induced by structural transformation through thermal treating in the red Narrow-Band phosphor K2GeF6:Mn4+. ACS Appl. Mater. Interfaces 7, 10656 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Kim, W.B. Park, J. Lee, C.H. Kim, S.P. Singh, K. Sohn, Rb3SiF7:Mn4+ and Rb2CsSiF7:Mn4+ red-emitting phosphors with a faster decay rate. Chem. Mater. 30, 6936–6944 (2018)CrossRefGoogle Scholar
  11. 11.
    Z. Liang, Z. Yang, H. Tang, J. Guo, Z. Yang, Q. Zhou, Synthesis, luminescence properties of a novel oxyfluoride red phosphor BaTiOF4: Mn4+ for LED backlighting. Opt. Mater. 90, 89 (2019)CrossRefGoogle Scholar
  12. 12.
    J. Hou, X. Yin, Y. Fang, F. Huang, W. Jiang, Novel red-emitting perovskite-type phosphor CaLa1xMgM′O6: xEu3+ (M′ = Nb, Ta) for white LED application. Opt. Mater. 34, 1394 (2012)CrossRefGoogle Scholar
  13. 13.
    X. Yin, Y. Wang, F. Huang, Y. Xia, D. Wan, J. Yao, Excellent red phosphors of double perovskite Ca2LaMO6: Eu (M = Sb, Nb, Ta) with distorted coordination environment. J. Solid State Chem. 184, 3324 (2011)CrossRefGoogle Scholar
  14. 14.
    M.C. Knapp, P.M. Woodward, A-site cation ordering in AA′BB′O6 perovskites. J. Solid State Chem. 179, 1076–1085 (2006)CrossRefGoogle Scholar
  15. 15.
    J.B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, T. Graf, M.S. Brandt, J. Simon, T. Walther, W. Mader, D. Topwal, D.D. Sarma, Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A= Sr, Ba, and Ca). Phys. Rev. B 68, 144431 (2003)CrossRefGoogle Scholar
  16. 16.
    J. Hou, X. Yin, F. Huang, Synthesis and photoluminescence properties of NaLaMgWO6: RE3+ (RE = Eu, Sm, Tb) phosphor for white LED application. Mater. Res. Bull. 47, 1295–1300 (2012)CrossRefGoogle Scholar
  17. 17.
    G. King, L.M. Wayman, P.M. Woodward, Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites. J. Solid State Chem. 182, 1319–1325 (2009)CrossRefGoogle Scholar
  18. 18.
    G.F. Han, H.D. Hadi, A. Bruno, Additive selection strategy for high performance perovskite photovolataic. J. Phys. Chem. C 122, 13884 (2017)CrossRefGoogle Scholar
  19. 19.
    P.M. Da, G.F. Zheng, Tailoring interface of lead-halide perovskite solar cells. Nano Res. 10, 1471 (2017)CrossRefGoogle Scholar
  20. 20.
    C.D. Brandle, V.J. Fratello, Preparation of perovskite oxides for high Tc superconductor substrates. J. Mater. Res. 5, 2160–2164 (1990)CrossRefGoogle Scholar
  21. 21.
    G. King, P.M. Woodward, Cation ordering in perovskites. J. Mater. Chem. 20, 5785–5796 (2010)CrossRefGoogle Scholar
  22. 22.
    R. Verstraete, H.F. Sijbom, J.J. Joos, K. Korthout, D. Poelman, C. Detavernier, P.F. Smet, Red Mn4+-doped fluoride phosphors: why purity matters. ACS Appl. Mater. Interfaces 10, 18845 (2018)CrossRefGoogle Scholar
  23. 23.
    R.A.F. Pinlac, C.L. Stern, K.R. Poeppelmeier, New layered oxide-fluoride perovskites: KNaNbOF5 and KNaMO2F4 (M = Mo6+, W6+). Crystals 1, 3 (2011)CrossRefGoogle Scholar
  24. 24.
    T. Hu, H. Lin, Y. Cheng, Q. Huang, J. Xu, Y. Gao, J. Wang, Y. Wang, A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn4+-activated oxyfluoride Na2WO2F4. J. Mater. Chem. C 5, 10524–10532 (2017)CrossRefGoogle Scholar
  25. 25.
    R. Chatterjee, S. Saha, D. Sen, K. Panigrahi, U.K. Ghorai, G.C. Das, K.K. Chattopadhyay, Neutralizing the charge imbalance problem in Eu3+-activated BaAl2O4 nanophosphors: theoretical insights and experimental validation considering K+ codoping. ACS Omega 3, 788–800 (2018)CrossRefGoogle Scholar
  26. 26.
    F. Liu, Y. Fang, J. Hou, N. Zhang, Z. Ma, Garnet-based red emitting phosphors Li6MLa2Nb2O12:Eu3+(M=Ca, Sr, Ba): photoluminescence improvement by changing crystal lattice. Ceram. Int. 40, 3237–3241 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Zhang, H. Wei, Y. Zhou et al., Green synthesis of K2TiF6: Mn4+ using KHF2 as accessory ingredient: a novel airtight solid-state strategy. Opt. Mater. 86, 165–171 (2018)CrossRefGoogle Scholar
  28. 28.
    H. Ming, J. Zhang, L. Liu, J. Peng, F. Du, X. Ye, Y. Yanga, H. Nie, A novel Cs2NbOF5:Mn4+ oxyfluoride red phosphor for light-emitting diode devices. Dalton. Trans. 47, 16048 (2018)CrossRefGoogle Scholar
  29. 29.
    K. Panigrahi, S. Saha, S. Sain, R. Chatterjee, A. Das, U.K. Ghorai, N.S. Das, K.K. Chattopadhyay, White light emitting MgAl2O4:Dy3+, Eu3+ nanophosphor for multifunctional applications. Dalton Trans. 47, 12228–12242 (2018)CrossRefGoogle Scholar
  30. 30.
    A. Das, S. Saha, K. Panigrahi, Enhanced photoluminescence properties of low-dimensional Eu3+-Activated Y4Al2O9 phosphor compared to bulk for solid-state lighting applications and latent fingerprint detection-based forensic applications. Microsc. Microanal. 26, 1–9 (2019)Google Scholar
  31. 31.
    K.K. Chattopadhyay, A. Das, S. Saha, K. Panigrahi, A. Mitra, R. Chatterjee, U.K. Ghorai, B. Das, Morphology control and photoluminescence properties of Eu3+-activated Y4Al2O9 nanophosphors for solid state lighting applications. CrystEngComm 20, 2540–2552 (2018)CrossRefGoogle Scholar
  32. 32.
    A. Santra, K. Panigrahi, S. Saha, N. Mazumder, A. Ghosh, S. Bakuli, K.K. Chattopadhyay, U.K. Ghorai, Enhancement of radiative transitions in Sm3+ activated CaTiO3 nanophosphor by modulating co-activator concentration. J. Mater. Sci. Mater. El. 30, 6311–6321 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiChina
  2. 2.Resources and Environment BranchChina National Institute of StandardizationBeijingChina

Personalised recommendations