Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Thermal annealing of AlN films for piezoelectric applications

Abstract

Aluminum nitride is an excellent electrical insulator and important piezoelectric material making it suitable for a wide range of applications in electronics and optoelectronics. However, to exhibit and preserve those piezoelectric properties, care has to be taken during manufacturing process. Indeed, the c-axis crystalline orientation of AlN is a necessary condition for piezoelectricity. Therefore, the goal of this paper is to compare AlN films grown on (100) silicon substrate by pulsed reactive DC sputtering at 400 °C on top of three different metallic underlayer electrodes (Ti/Pt, Cr/Pt, and AlN/Cr/Pt) by preserving the crystalline properties not only at room temperature but also at high temperatures. Among all deposited AlN films on top of the metallic underlayer electrode, only AlN/Cr/Pt has kept its crystallinity up to 950 °C.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    H. Jin, B. Feng, S. Dong, C. Zhou, J. Zhou, Y. Yang, T. Ren, J. Luo, D. Wang, J. Electron. Mater. 41(7), 1948 (2012)

  2. 2.

    T. Hu, S. Mao, C. Chao, M. Wu, H. Huang, D. Gan, J. Electron. Mater. 36(1), 81 (2007)

  3. 3.

    E. Herth, L. Valbin, F. Lardet-Vieudrin, E. Algré, Microsyst. Technol. 23(9), 3873 (2017). https://doi.org/10.1007/s00542-015-2727-9

  4. 4.

    O. Mareschal, S. Loiseau, A. Fougerat, L. Valbin, G. Lissorgues, S. Saez, C. Dolabdjian, R. Bouregba, G. Poullain, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 513 (2010). https://doi.org/10.1109/TUFFC.2010.1441

  5. 5.

    E. Herth, E. Algré, J.Y. Rauch, J.C. Gerbedoen, N. Defrance, P. Delobelle, Phys. Stat. Solidi A 213(1), 114 (2016). https://doi.org/10.1002/pssa.201532302

  6. 6.

    A. Pandey, S. Dutta, R. Prakash, R. Raman, A.K. Kapoor, D. Kaur, J. Electron. Mater. 47(2), 1405 (2018)

  7. 7.

    K. Jones, M. Derenge, T. Zheleva, K. Kirchner, M. Ervin, M. Wood, R. Vispute, R. Sharma, T. Venkatesan, J. Electron. Mater. 29(3), 262 (2000)

  8. 8.

    K. Jones, M. Derenge, P. Shah, T. Zheleva, M. Ervin, K. Kirchner, M. Wood, C. Thomas, M. Spencer, O. Holland et al., J. Electron. Mater. 31(6), 568 (2002)

  9. 9.

    R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41(4), 299 (1994). https://doi.org/10.1016/0003-682X(94)90091-4

  10. 10.

    R. Roth, F. Field, J. Clark, J. Comput. Aided Mater. Des. 1(3), 325 (1994). https://doi.org/10.1007/BF00712855

  11. 11.

    M.F. Ashby, D. Cebon, J. Phys. IV 03(C7), C7 (1993). https://doi.org/10.1051/jp4:1993701

  12. 12.

    M.F. Ashby, Acta Mater. 48(1), 359 (2000). https://doi.org/10.1016/S1359-6454(99)00304-3

  13. 13.

    J. Qian, Y.P. Zhao, Mater. Des. 23(7), 619 (2002). https://doi.org/10.1016/S0261-3069(02)00051-1

  14. 14.

    M.F. Ashby, Y.J.M. Bréchet, D. Cebon, L. Salvo, Mater. Des. 25(1), 51 (2004). https://doi.org/10.1016/S0261-3069(03)00159-6

  15. 15.

    D. Quinn, S. Spearing, M. Ashby, N.A. Fleck, J. Microelectromech. Syst. 15(5), 1039 (2006). https://doi.org/10.1109/JMEMS.2006.880292

  16. 16.

    R.V. Rao, Mater. Sci. Eng. A 431(1–2), 248 (2006). https://doi.org/10.1016/j.msea.2006.06.006

  17. 17.

    G. Guisbiers, E. Herth, B. Legrand, N. Rolland, T. Lasri, L. Buchaillot, Microelectron. Eng. 87(9), 1792 (2010). https://doi.org/10.1016/j.mee.2009.10.016

  18. 18.

    K. Kano, K. Arakawa, Y. Takeuchi, M. Akiyama, N. Ueno, N. Kawahara, Sens. Actuators A 130–131, 397 (2006). https://doi.org/10.1016/j.sna.2005.12.047

  19. 19.

    A.T. Tran, O. Wunnicke, G. Pandraud, M.D. Nguyen, H. Schellevis, P.M. Sarro, Sens. Actuators A 202, 118 (2013). https://doi.org/10.1016/j.sna.2013.01.047

  20. 20.

    C. Zuo, N. Sinha, G. Piazza, Sens. Actuators A 160(1–2), 132 (2010). https://doi.org/10.1016/j.sna.2010.04.011

  21. 21.

    E. Herth, F. Lardet-Vieudrin, L. Valbin, E. Algré, in Proceedings of the 2015 Symposium on Design, Test. Integration and Packaging of MEMS/MOEMS (DTIP), vol. 2015 (2015), pp. 1–5. https://doi.org/10.1109/DTIP.2015.7160996

  22. 22.

    A. Andrei, K. Krupa, M. Jozwik, P. Delobelle, L. Hirsinger, C. Gorecki, L. Nieradko, C. Meunier, Sens. Actuators A 141(2), 565 (2008). https://doi.org/10.1016/j.sna.2007.10.041

  23. 23.

    N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza, Appl. Phys. Lett. 95(5), 053106 (2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5198318

  24. 24.

    R. Lanz, P. Muralt, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(6), 938 (2005)

  25. 25.

    A. Samarao, F. Ayazi, in Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (2011), pp. 169–172. https://doi.org/10.1109/MEMSYS.2011.5734388

  26. 26.

    D.T. Phan, G.S. Chung, Appl. Surf. Sci. 257(20), 8696 (2011). https://doi.org/10.1016/j.apsusc.2011.05.050

  27. 27.

    R. Yoshizawa, H. Miyake, K. Hiramatsu, Jpn. J. Appl. Phys. 57(1S), 01AD05 (2017). https://doi.org/10.7567/jjap.57.01ad05

  28. 28.

    M.X. Wang, F.J. Xu, N. Xie, Y.H. Sun, B.Y. Liu, Z.X. Qin, X.Q. Wang, B. Shen, CrystEngComm 20(41), 6613 (2018). https://doi.org/10.1039/C8CE00967H

  29. 29.

    U. Schmid, H. Seidel, J. Vac. Sci. Technol. A 24(6), 2139 (2006). https://doi.org/10.1116/1.2359739

  30. 30.

    G. Guisbiers, L. Buchaillot, Nanotechnology 19(43), 435701 (2008). https://doi.org/10.1088/0957-4484/19/43/435701

  31. 31.

    E. Herth, E. Algré, B. Legrand, L. Buchaillot, Microelectron. Eng. 88(5), 724 (2011). https://doi.org/10.1016/j.mee.2010.06.032

  32. 32.

    J.O. Olowolafe, R.E. Jones, A.C. Campbell, R.I. Hegde, C.J. Mogab, R.B. Gregory, J. Appl. Phys. 73(4), 1764 (1993). https://doi.org/10.1063/1.353212

  33. 33.

    I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78(1), 013705 (2007). https://doi.org/10.1063/1.2432410

  34. 34.

    G. Guisbiers, O.V. Overschelde, M. Wautelet, P. Leclère, R. Lazzaroni, J. Phys. D: Appl. Phys. 40(4), 1077 (2007). https://doi.org/10.1088/0022-3727/40/4/024

  35. 35.

    G. Guisbiers, L. Buchaillot, J. Phys. D: Appl. Phys. 41(17), 172001 (2008). https://doi.org/10.1088/0022-3727/41/17/172001

  36. 36.

    G. Guisbiers, D. Liu, Q. Jiang, L. Buchaillot, Phys. Chem. Chem. Phys. 12(26), 7203 (2010). https://doi.org/10.1039/C002496A

  37. 37.

    N. Naumenko, P. Nicolay, Appl. Phys. Lett. 111(7), 073507 (2017). https://doi.org/10.1063/1.4985582

  38. 38.

    T. Aubert, O. Elmazria, B. Assouar, L. Bouvot, M. Oudich, Appl. Phys. Lett. 96(20), 203503 (2010). https://doi.org/10.1063/1.3430042

  39. 39.

    L. Vergara, J. Olivares, E. Iborra, M. Clement, A. Sanz-Hervás, J. Sangrador, Thin Solid Films 515(4), 1814 (2006). https://doi.org/10.1016/j.tsf.2006.07.002

  40. 40.

    H. Miyake, C.H. Lin, K. Tokoro, K. Hiramatsu, J. Cryst. Growth 456, 155 (2016). https://doi.org/10.1016/j.jcrysgro.2016.08.028

  41. 41.

    B. Liu, J. Gao, K. Wu, C. Liu, Solid State Commun. 149(17–18), 715 (2009)

  42. 42.

    F. Medjani, R. Sanjines, G. Allidi, A. Karimi, Thin Solid Films 515(1), 260 (2006)

  43. 43.

    S. Priya, H.-C. Song, Y. Zhou, R. Varghese, A. Chopra, S.-G. Kim, I. Kanno, L. Wu, D.S. Ha, J. Ryu, RG. Polcawich, Energy Harvest. Syst. 4(1), 3 (2017). https://doi.org/10.1515/ehs-2016-0028. https://www.degruyter.com/view/j/ehs.2017.4.issue-1/ehs-2016-0028/ehs-2016-0028.xml

Download references

Acknowledgements

This work was partly supported by the French RENATECH network with FEMTO-ST and C2N as technological facilities.

Author information

Correspondence to Etienne Herth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herth, E., Fall, D., Rauch, J. et al. Thermal annealing of AlN films for piezoelectric applications. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-02984-w

Download citation