Advertisement

Dopant incited alterations in structural, morphological, optical, and dielectric properties of Er-doped LaCrO3

  • 5 Accesses

Abstract

The crystalline samples of La1−xErxCrO3 (x = 0.0, 0.2, 0.4, 0.6) system have been synthesized through the sol–gel process. The XRD pattern of the pristine LaCrO3 displays the single-phase characteristics having orthorhombic crystal structure with Pnma space group. On the other hand, the Er-doped samples exhibit the mixed-phase attributes of both parent and ErCrO3 compounds. The structural alteration from LaCrO3 to ErCrO3 increases with the increase in doping content. The escalation in the Er doping amount leads to a decline in the crystallite size and unit cell volume. TEM analysis verifies that the particle size reduces from 423 to 328 nm, as the content of Er in the crystal lattice is increased. The UV/Vis spectroscopy specifies that the energy band gap (Eg) values rise slightly with the increment in the doping quantity of Er in the LaCrO3. The Urbach energy is also found to increase in the doped samples. The effect of Er doping on optical constants namely refractive index, extinction coefficient, and optical conductivity has been investigated. The study on dielectric parameters infers that the dielectric constant and loss tangent (tanδ) display the typical dispersive behavior attributed to the Maxwell–Wagner interfacial polarization. These samples follow the UDR model only in the high-frequency regime. The electric modulus exploration ascertained that grains are mainly involved in the conduction process in these samples. The frequency-dependent ac conductivity plot indicated that these samples follow the Jonscher empirical power law in the given frequency range.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells (Springer, New York, 2009)

  2. 2.

    M.F.M. Zwinkels, O. Haussner, P.G. Menon, S.G. Jaras, Catal. Today 47, 73–82 (1999)

  3. 3.

    A. Lund, T. Jacobsen, K.V. Hansen, M. Mogensen, J. Solid State Electrochem. 16, 2113–2120 (2012)

  4. 4.

    K. Sardar, M.R. Lees, R.J. Kashtiban, J. Sloan, R.I. Walton, Chem. Matter. 23, 48–56 (2011)

  5. 5.

    V.D. Nithya, R.J. Immanuel, S.T. Senthilkumar, C. Sanjeeviraja, I. Perelshtein, D. Zitoun, R.K. Selvan, Mater. Res. Bull. 47, 1861–1868 (2012)

  6. 6.

    S. Gupta, M.K. Mahapatra, P. Singh, Mater. Sci. Eng. R 90, 1–36 (2015)

  7. 7.

    J.S. Zhou, J.A. Alonso, A. Muonz, M.T. Fernandez-Dıaz, J.B. Goodenough, Phys. Rev. Lett. 106, 057201 (2011)

  8. 8.

    S. Mukherje, M.R. Gonal, M.K. Patel, M. Roy, A. Patra, A.K. Tyagi, J. Am. Ceram. Soc. 95, 290–295 (2012)

  9. 9.

    H.P.S. Correa, C.O. Paiva-Santos, L.F. Setz, L.G. Martinez, S.R.H. Mello-Castanho, M.T.D. Orlando, Powder Diffr. 23, 18–22 (2008)

  10. 10.

    W.C. Koehler, E.O. Wollan, J. Phys. Chem. Solids 2100 (1957)

  11. 11.

    K.P. Ong, P. Blaha, P. Wu, Phys. Rev. B 77, 073102 (2008)

  12. 12.

    M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, J. Alloys Compd. 740, 1012–1023 (2018)

  13. 13.

    R. Shukla, J. Manjanna, A.K. Bera, S.M. Yusuf, A.K. Tyagi, Inorg. Chem. 48, 11691–11696 (2009)

  14. 14.

    L.M. Daniels et al., Inorg. Chem. 52, 12161–12169 (2013)

  15. 15.

    N.Q. Minh, J. Amer. Ceram. Soc. 76, 563–588 (1993)

  16. 16.

    A. Weber, E.I. Tiffee, J. Power Sources 127, 273–283 (2004)

  17. 17.

    A.S. Anokhin, S.S. Strelnikova, N.T. Andrianov, N.A. Makarov, D.A. Zhirov, K.A. Solntsev, Inorg. Mater. 49(9), 935–938 (2013)

  18. 18.

    S. Mukherjee, M.R. Gonal, M.K. Patel, M. Roy, A. Patra, A.K. Tyagi, J. Am. Ceram. Soc. 95, 290–295 (2012)

  19. 19.

    S.M. El-Sheikh, M.M. Rashad, J. Alloys Compd. 496, 723–732 (2010)

  20. 20.

    L.M. Daniels, M.C. Weber, M.R. Lees, M. Guennou, R.J. Kashtiban, J. Sloan, J. Kreisel, R.I. Walton, Inorg. Chem. 52, 12161–12169 (2013)

  21. 21.

    J. Shi, S. Yin, M.S. Seehra, M. Jain, J. Appl. Phys. 123, 193901 (2018)

  22. 22.

    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, J. Appl. Cryst. 32, 36–50 (1999)

  23. 23.

    A. Wrzesinska, A. Khort, I. Bobowska, A. Busiakiewicz, A. Wypych-Puszkarz, J. Nanomater. 2019, 11 (2019)

  24. 24.

    N. Zarrin, S. Husain, W. Khan, S. Manzoor, J. Alloys Compd. 784, 541–555 (2019)

  25. 25.

    W.W. Wendlandt, H.G. Hecht, Reflectance Spectroscopy, (Wiley Interscience, New York, 1966) p. 80

  26. 26.

    N. Zarrin, S. Husain, Appl. Phys. A 124, 730 (2018)

  27. 27.

    J. Tauc, R. Grigorvici, A. Vancu, Phys. Status Solidi (b) 15, 627 (1966)

  28. 28.

    P. Gupta, M. Ramrakhiani, Open Nanosci. J. 3, 15–19 (2009)

  29. 29.

    S.M. Wasim, G. Marın, C. Rincon, P. Bocaranda, G. Sanchez Perez, J. Phys. Chem. Solid 61(5), 669–673 (2000)

  30. 30.

    G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47(20), 1480 (1981)

  31. 31.

    H. Sumi, Y. Toyozawa, J. Phys. Soc. Jpn. 31(2), 342–358 (1971)

  32. 32.

    N. Ahmad, S. Khan, J. Alloys Compd. 720, 502–509 (2017)

  33. 33.

    A. Nashim, K.M. Parida, J. Mat. Chem. A 2, 18405 (2014)

  34. 34.

    A.A. Akl, Appl. Surf. Sci. 256, 7496 (2010)

  35. 35.

    D.P. Gosain, T. Shimizu, M. Suzuki, T. Bando, S. Okano, J. Mater. Sci. 26, 3271 (1991)

  36. 36.

    F. Duanand, J. Guojun, Introduction to Condensed Matter Physics, (World Scientific Publishing Company, Hackensack, 2005)

  37. 37.

    K.W. Wagner, Ann. Phys. 345, 817 (1913)

  38. 38.

    J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1982)

  39. 39.

    C.G. Koops, Phys. Rev. 83, 121 (1951)

  40. 40.

    H.M. Chenari, M.M. Golzan, H. Sedghi, A. Hassanzadeh, M. Talebian, Curr. Appl. Phys. 11, 1071–1076 (2011)

  41. 41.

    J. Yanmin, H. Luo, S.W. Or, Y. Wang, H.L.W. Chan, J. Appl. Phys. 105, 124109 (2009)

  42. 42.

    N. Zarrin, S. Husain, S. Sharma, A. Somvanshi, S. Manzoor, W. Khan, J. Phys. Chem. Solids, 26, 109281 (2019)

  43. 43.

    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70(14), 144106 (2004)

  44. 44.

    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850–3856 (1989)

  45. 45.

    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812–2819 (2003)

  46. 46.

    S.A. Makhlouf, Z.H. Bakr, K.I. Aly, M.S. Moustafa, Superlattices Microstruct. 64, 107–117 (2013)

  47. 47.

    P. Choudhary, D. Varshney, Solid State Commun. 271, 89–96 (2018)

  48. 48.

    A.K. Jonscher, Nature 253, 717 (1975)

  49. 49.

    R.S. Devan, B.K. Chougule, J. Appl. Phys. 101, 014109 (2007)

  50. 50.

    P. Kofstad, in Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, ed. by R.E. Krieger (Publishing Co., Malabar, FL, 1983), pp. 15–21

Download references

Author information

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarrin, N., Husain, S., Gaur, D.D. et al. Dopant incited alterations in structural, morphological, optical, and dielectric properties of Er-doped LaCrO3. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-02894-x

Download citation