Induced ferromagnetism and enhanced optical behaviour in indium-doped barium stannate system

  • M. Avinash
  • M. Muralidharan
  • S. Selvakumar
  • Shamima Hussain
  • K. SivajiEmail author


Structural, morphological, optical and magnetic properties of chemically synthesized Indium-doped BaSnO3 (BSO) nanostructures were investigated. XRD results indicated cubic structure from Rietveld refinements and FT-IR studies confirmed the characteristic vibrations for all doped compounds. The presence of oxygen vacancies were derived from the defect-induced Raman modes. Surface morphological studies by HR-SEM showed a significant change from pseudo-cuboids to mixed rods. The presence of oxygen vacancies, oxidation states and elements (Ba, Sn, O and In) were studied by X-ray Photoelectron spectroscopy. UV–Vis and Photoluminescence studies demonstrated a decreasing tendency in bandgap values and the presence of defect states. Interesting defect sites and F-centres were probed by Electron paramagnetic resonance studies. A transition from diamagnetic to ferromagnetic behaviour observed from room temperature magnetic measurements was explained based on F-centre exchange interaction.



AM acknowledges the University of Madras for University Research Fellowship (URF). MM acknowledges the financial support by DST-SERB for National Post Doctoral Fellowship (PDF 2016/000372). Authors are grateful to Central Instrumentation Facility (CIF), University of Madras and UGC-DAE-CSR, Kalpakkam Node for various measurements.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest in this article.


  1. 1.
    H. Kageyama, K. Hayashi, K. Maeda, J.P. Attfield, Z. Hiroi, J.M. Rondinelli, K.R. Poeppelmeier, Nat. Commun. 8, 772 (2018)CrossRefGoogle Scholar
  2. 2.
    K. James, A. Aravind, M. Jayaraj, Appl. Surf. Sci. 282, 121–125 (2013)CrossRefGoogle Scholar
  3. 3.
    C. Shan, T. Huang, J. Zhang, M. Han, Y. Li, Z. Hu, J. Chu, J. Phys. Chem. C 118, 6994–7001 (2014)CrossRefGoogle Scholar
  4. 4.
    R. Cava, B. Batlog, J.J. Krajewski, R. Farrow, L. Rupp, A. White, K. Short, W. Peck, T. Kometani, Nature 332, 814–816 (1988)CrossRefGoogle Scholar
  5. 5.
    P.A. Lee, N. Nagosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)CrossRefGoogle Scholar
  6. 6.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Raghavan, T. Schumann, H. Kim, J.Y. Zhang, T.A. Cain, S. Stemmer, APL Mater. 4, 016106 (2006)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, H. Zhang, Y. Wang, W.F. Zhang, J. Phys. Chem. C 112, 8553–8557 (2008)CrossRefGoogle Scholar
  9. 9.
    L. Zhu, Z. Shao, J. Ye, X. Zhang, X. Pan, S. Dai, Chem. Commun 52, 970 (2016)CrossRefGoogle Scholar
  10. 10.
    M.R. Manju, V.P. Kumar, V. Dayal, Phys B 500, 14–19 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Quinzhuang, H. Yunhua, L. Hong, L. Bing, G. Guanyin, F. Lele, D. Jianming, Appl. Phys. Express 7, 033006 (2014)CrossRefGoogle Scholar
  12. 12.
    U.S. Alaan, P. Shafer, A.T. N’Diaye, E. Arenholz, Y. Suzuki, Appl. Phys. Lett. 108, 042106 (2016)CrossRefGoogle Scholar
  13. 13.
    M.R. Manju, K.S. Ajay, N.M. D’Souza, S. Hunagund, R. Hadimani, D.V. Dayal, J. Magn. Magn. Mater. 452, 23–29 (2018)CrossRefGoogle Scholar
  14. 14.
    D.J. Singh, Q. Xu, K.P. Ong, Appl. Phys. Lett. 104, 011910 (2014)CrossRefGoogle Scholar
  15. 15.
    N. Rajamanickam, P. Soundararajan, S.M. Senthilkumar, K. Jayakumar, K. Ramachandran, Electrochim. Acta 296, 771–782 (2018)CrossRefGoogle Scholar
  16. 16.
    P.H. Borse, U.A. Joshi, Sang Min Ji, Jum Suk Jang and Jae Sung lee. Appl. Phys. Lett. 90, 034103 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Li, H. Yang, J. Tian, Hu Xianolin, H. Cui, RSC Adv. 7, 11503–11509 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Tahir, N.A.S. Amin, Appl. Catal B 162, 98–109 (2015)CrossRefGoogle Scholar
  19. 19.
    T.R. Sobahi, M.S. Amin, R.M. Mohamed, Appl. Nanosci. 8, 557–565 (2018)CrossRefGoogle Scholar
  20. 20.
    A. Murali, P.K. Saraswat, H.Y. Sohn, Mater. Today Chem. 11, 60–68 (2019)CrossRefGoogle Scholar
  21. 21.
    S. Singh, N. Jahan, A. Khanna, G.S. Lotey, N.K. Verma, Chalcogenide Lett 2, 73–78 (2012)Google Scholar
  22. 22.
    C. Dong, J. Appl. Crystallogr. 32, 838–839 (2009)CrossRefGoogle Scholar
  23. 23.
    H.M. Rietveld, J. Appl. Crystallogr 2, 65–71 (1969)CrossRefGoogle Scholar
  24. 24.
    A. C. Larson, and R. B. Von Dreele, L. Alamos, National Laboratory Report No. LAUR 86–748 (1994).Google Scholar
  25. 25.
    A.L. Patterson, Phys. Rev 56, 978–982 (1939)CrossRefGoogle Scholar
  26. 26.
    L. Li, M. Wang, D. Guo, Fu Ruixue, Q. Meng, J. Electroceram. 30, 129–132 (2013)CrossRefGoogle Scholar
  27. 27.
    D.R. Lide, Crystallogr. Rev. 15, 223–224 (2009)CrossRefGoogle Scholar
  28. 28.
    N. Rajamanickam, K. Jayakumar, K. Ramachandran, J. Mater. Sci. Mater. Electron. 29, 19880–19888 (2018)CrossRefGoogle Scholar
  29. 29.
    S.L. Angel, K. Deepa, N. Rajamanickam, K. Jayakumar, K. Ramachandran, AIP Conf. Proc. 1942, 050004 (2018)CrossRefGoogle Scholar
  30. 30.
    K. Momma, F. Izumi, J. Appl. Crystallogr 41, 653–658 (2008)CrossRefGoogle Scholar
  31. 31.
    G.K. Williamson, W.H. Hall, Acta. Metall 1(1), 22–31 (1953)CrossRefGoogle Scholar
  32. 32.
    M. Muralidharan, V. Anbarasu, A.E. Perumal, K. Sivakumar, J. Mater. Sci. Mater. Electron 26, 6875–6886 (2015)CrossRefGoogle Scholar
  33. 33.
    W.H. Rothery, G.V. Raynor, The Structure of Metals and Alloys (Richard Clay Publications, Suffolk, 1962)Google Scholar
  34. 34.
    J. Anthoniappen, C.S. Tu, P.Y. Chen, C.S. Chen, Y.U. Idzerda, S.J. Chiu, J. Eur. Ceram. Soc 35, 3495–3506 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Omeri, G. Rekhila, M. Trari, Y. Bessekhouad, J. Solid State Electrochem. 19, 1651–1658 (2015)CrossRefGoogle Scholar
  36. 36.
    A.S. Deepa, S. Vidya, P.C. Manu, S. Solomon, A. John, J.K. Thomas, J. Alloys. Compd. 509(5), 1830–1835 (2011)CrossRefGoogle Scholar
  37. 37.
    U. Kumar, M.J. Ansareee, A.K. Verma, S. Upadhyay, G. Gupta, Mater. Res. Express. 4, 116304 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Sumithra, N.V. Jaya, J. Supercond. Nov. Magn 31, 2777 (2018)CrossRefGoogle Scholar
  39. 39.
    D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10(1), 253–290 (1981)CrossRefGoogle Scholar
  40. 40.
    Bilbao Crystallographic Server,
  41. 41.
    K. Balamurugan, N.H. Kumar, J.A. Chelvane, P.N. Santhosh, Phys. B 407(13), 2519–2523 (2012)CrossRefGoogle Scholar
  42. 42.
    A. Anderson (ed.), The Raman Effect: Principles, 1 (Marcel Dekker Inc., New York, 1971)Google Scholar
  43. 43.
    K. Balamurugan, E.S. Kumar, B. Ramachandran, S. Venkatesh, N.H. Kumar, M.S.R. Rao, P.N. Santhosh, J. Appl. Phys. 111, 074107 (2012)CrossRefGoogle Scholar
  44. 44.
    P. Tarte, A. Rulmont, M. Liegeoiss-Duyckaerts, R. Chay, J.M. Winand, Solid. State. Ion. 42, 177–196 (1990)CrossRefGoogle Scholar
  45. 45.
    S. Saravanakumar, D. Sivaganesh, K.S.S. Ali, M.C. Robert, M.P. Rani, R. Chokkalingam, R. Saravanan, Phys. B 545, 134–140 (2018)CrossRefGoogle Scholar
  46. 46.
    S. Saravanakumar, A. Escobedo-Morales, U. Pal, R.J. Aranda, R. Saravanan, J. Mater. Sci. 49, 5529–5536 (2014)CrossRefGoogle Scholar
  47. 47.
    S. Sumithra, N.V. Jaya, Phys B 493, 35–42 (2016)CrossRefGoogle Scholar
  48. 48.
    N. Rajamanickam, P. Soundarrajan, K. Jayakumar, K. Ramachandran, Sol. Energy Mater Sol. Cells 166, 69–77 (2017)CrossRefGoogle Scholar
  49. 49.
    D.L. Wood, J. Tauc, Phys. Rev. B 5(8), 3144–3151 (1972)CrossRefGoogle Scholar
  50. 50.
    H. Mizoguchi, P. Chen, P. Boolchand, V. Ksenofontov, C. Felser, P.W. Barnes, P.M. Woodward, Chem. Mater. 25, 3858–3866 (2015)CrossRefGoogle Scholar
  51. 51.
    D.D.K. Patel, A. Sengupta, B. Vishwanadh, V. Sudarshan, R.K. Vasta, R. Kadam, S.K. Kulshreshta, Eur. J. Inorg. Chem. 10, 1609–1619 (2012)CrossRefGoogle Scholar
  52. 52.
    R. Payling, P. Larkins, Optical Emission Lines of Elements, 1st edn. (Wiley, New York, 2000)Google Scholar
  53. 53.
    Q. Yang, L. Lou, G. Wang, Phys. Status Solidi B 255, 1700651 (2018)CrossRefGoogle Scholar
  54. 54.
    J.A.M. Van Roosmalen, E.H.P. Cordfunke, R.B. Helmholdt, J. Solid. State. Chem 110, 100–105 (1995)CrossRefGoogle Scholar
  55. 55.
    D. Block, A. Herve, R.T. Cox, Phys. Rev. B 25, 6049 (1982)CrossRefGoogle Scholar
  56. 56.
    Da-Yong Lu and Ting Ting Liu, J. Alloys. Compd 698, 967–976 (2017)CrossRefGoogle Scholar
  57. 57.
    T. Koladiazhnyi, A. Petric, J. Phys. Chem. Solids 64, 953–960 (2003)CrossRefGoogle Scholar
  58. 58.
    M. Avinash, M. Muralidharan, K. Sivaji, Phys. B 570, 157–165 (2019)CrossRefGoogle Scholar
  59. 59.
    J. Philp, A. Punnose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P.R. LeClair, T.S. Santos, J.S. Moodera, Nat. Mater. 5, 298–304 (2006)CrossRefGoogle Scholar
  60. 60.
    J.M.D. Coey, S.A. Chambers, MRS Bull. 33, 1053–1058 (2008)CrossRefGoogle Scholar
  61. 61.
    K. Balamurugan, N.H. Kumar, B. Ramachandran, M.S.R. Rao, J.A. Chelvane, P.N. Santhosh, Solid State Commun. 149, 884–887 (2009)CrossRefGoogle Scholar
  62. 62.
    A.C. Durst, R.N. Bhatt, P.A. Wolff, Phys. Rev. B 65, 235205 (2002)CrossRefGoogle Scholar
  63. 63.
    S. Chattopadhyay, S.K. Neogi, A. Sarkar, M.D. Mukadam, S.M. Yusuf, A. Banerjee, S. Bandyopadhyay, J. Magn. Magn. Mater. 323, 363–368 (2011)CrossRefGoogle Scholar
  64. 64.
    C. Kursun, M. Gogebakan, E. Uludag, M.S. Bozgeyik, F.S. Uludag, Sci. Rep. 8, 13083 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  2. 2.Division of Applied PhysicsUniversity of TsukubaTsukubaJapan
  3. 3.UGC-DAE Consortium for Scientific Research, Kalpakkam NodeKokilameduIndia

Personalised recommendations