Advertisement

Fabrication of WO3 nanorod/graphene/BiV1−xMoxO4 heterojunction photoelectrode for efficient photoelectrochemical water splitting

  • 5 Accesses

Abstract

We report the fabrication of a novel WO3 nanorod/graphene/BiV1−xMoxO4 heterojunction photoelectrode for photoelectrochemical (PEC) water splitting. The heterojunction arrays were fabricated via a hydrothermal deposition of WO3 nanorods on FTO glass, with subsequent depositing of graphene nanosheets and BiV1−xMoxO4 by spin-coating method, respectively. The structure of materials and PEC water splitting properties of the photoelectrodes were systemically investigated. The heterojunction exhibits an enhanced photocurrent density (2.27 mA/cm2 at 0.9 V vs. Ag/AgCl), which leads to a significant improvement in photoconversion efficiency (1.00% at about 0.7 V vs. Ag/AgCl). This remarkable PEC performance is mainly due to the constructive effect of the graphene (RGO) in expediting electron transfer and reducing charge recombination to realize enhanced use ratio of photo-generated carriers for the water splitting reaction. This result demonstrates the superiorities of the new graphene-mediated composites photoelectrode and provides a promising route for high-performance photoelectrochemical systems.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    W. Yang, Y. Yu, M.B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao, X. Wang, Nano Lett. 15, 7574 (2015)

  2. 2.

    M. Salem, S. Akir, I. Massoudi, Y. Litaiem, M. Gaidi, K. Khirouni, Appl. Phys. A 123, 243 (2017)

  3. 3.

    J. Seo, T. Takata, M. Nakabayashi, T. Hisatomi, N. Shibata, T. Minegishi, K. Domen, J. Am. Chem. Soc. 137, 12780 (2015)

  4. 4.

    I. Grigioni, K.G. Stamplecoskie, E. Selli, P.V. Kamat, J. Phys. Chem. C 119, 20792 (2015)

  5. 5.

    S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J.J.H. Pijpers, D.G. Nocera, Science 334, 645 (2011)

  6. 6.

    Y. Zhou, L. Zhang, L. Lin, B.R. Wygant, Y. Liu, Y. Zhu, Y. Zheng, C.B. Mullins, Y. Zhao, X. Zhang, G. Yu, Nano Lett. 17, 8012 (2017)

  7. 7.

    X. Yu, X. Han, Z. Zhao, J. Zhang, W. Guo, C. Pan, A. Li, Z.L. Wang, Nano Energy 11, 19 (2015)

  8. 8.

    Y. Wang, Y.Y. Zhang, J. Tang, H. Wu, M. Xu, Z. Peng, X.G. Gong, G. Zheng, ACS Nano 7, 9375 (2013)

  9. 9.

    W. Wang, M. Tian, A. Abdulagatov, S.M. George, Y.C. Lee, R. Yang, Nano Lett. 12, 655 (2012)

  10. 10.

    S.S. Yi, B.R. Wulan, J.M. Yan, Q. Jiang, Adv. Funct. Mater. 11, 1801902 (2019)

  11. 11.

    Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Energy Environ. Sci. 6, 347 (2013)

  12. 12.

    H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S.C. Warren, Energy Environ. Sci. 4, 958 (2011)

  13. 13.

    G. Wang, X. Yang, F. Qian, J.Z. Zhang, Y. Li, Nano Lett. 10, 1088 (2010)

  14. 14.

    Z. Kang, H.N. Si, S.C. Zhang, J. Wu, Y. Sun, Q.L. Liao, Z. Zhang, Y. Zhang, Adv. Funct. Mater. 15, 1808032 (2019)

  15. 15.

    X. Liu, F. Wang, Q. Wang, Phys. Chem. Chem. Phys. 14, 7894 (2012)

  16. 16.

    X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. Gao, J. Chen, J. Zhou, Z.L. Wang, Chem. Commun. 47, 5804 (2011)

  17. 17.

    W. Li, F. Zhan, J. Li, C. Liu, Y. Yang, Y. Li, Q. Chen, Electrochim. Acta 160, 57 (2015)

  18. 18.

    W.J. Li, P.M. Da, Y.Y. Zhang, Y.C. Wang, X. Lin, X.G. Gong, G.F. Zheng, ACS Nano 8, 11770 (2014)

  19. 19.

    M. Ma, K. Zhang, P. Li, M.S. Jung, M.J. Jeong, J.H. Park, Angew. Chem. 128, 11998 (2016)

  20. 20.

    J.Y. Li, J.F. Huang, J.P. Wu, L.Y. Cao, Y.L. Cheng, K. Yanagisawa, Mater. Lett. 115, 151 (2014)

  21. 21.

    J. Xu, X. Yang, H.K. Wang, X. Chen, C.Y. Luan, Z.X. Xu, Z.Z. Lu, V.A.L. Roy, W.J. Zhang, C.S. Lee, Nano Lett. 11, 4138 (2011)

  22. 22.

    Y. Peng, Q.G. Chen, D. Wang, H.Y. Zhou, A.W. Xu, CrystEngComm 17, 569 (2015)

  23. 23.

    P.M. Rao, L.L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P.D. Yang, X.L. Zheng, Nano Lett. 14, 1099 (2014)

  24. 24.

    J. Zhang, H. Ma, Z. Liu, Appl. Catal. B 201, 84 (2017)

  25. 25.

    L.J. Zhang, S. Li, B.K. Liu, D.J. Wang, T.F. Xie, ACS Catal. 4, 3724 (2014)

  26. 26.

    K. Sivula, F.L. Formal, M. Grätzel, Chem. Mater. 21, 2862 (2009)

  27. 27.

    J. Zhang, Z.H. Liu, Z.F. Liu, A.C.S. Appl, Mater. Interfaces 8, 9684 (2016)

  28. 28.

    J. Zhang, W. Luo, W. Li, X. Zhao, G. Xue, T. Yu, C. Zhang, M. Xiao, Z. Li, Z. Zou, Electrochem. Commun. 22, 49 (2012)

  29. 29.

    A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133, 11054 (2011)

  30. 30.

    Y. Hou, F. Zuo, A. Dagg, P.Y. Feng, Nano Lett. 12, 6464 (2012)

  31. 31.

    F.Y. Ning, M.F. Shao, S.M. Xu, Y. Fu, R.K. Zhang, M. Wei, D.G. Evans, X. Duan, Energy Environ. Sci. 9, 2633 (2016)

  32. 32.

    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

  33. 33.

    H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, ACS Nano 4, 380 (2010)

  34. 34.

    L. Liu, Z. Liu, A. Liu, X. Gu, C. Ge, F. Gao, L. Dong, Chemsuschem 7, 618 (2014)

  35. 35.

    Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 41, 782 (2012)

  36. 36.

    J.Z. Su, X.J. Feng, J.D. Sloppy, L.J. Guo, C.A. Grimes, Nano Lett. 11, 203 (2011)

  37. 37.

    S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297, 2243 (2002)

  38. 38.

    N.J. Bell, Y.H. Ng, A. Du, H. Coster, S.C. Smith, R. Amal, J. Phys. Chem. C 115, 6004 (2011)

  39. 39.

    Z. Luo, C. Li, S. Liu, T. Wang, J. Gong, Chem. Sci. 8, 91 (2017)

Download references

Acknowledgements

This work was supported by the Program for Talent Scientific Research Fund of LSHU (No. 2015XJJ-003), Education Department of Liaoning Province Basic Research Project (Nos. L2017LQN009 and L2017LQN029).

Author information

Correspondence to Jiuyu Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, M., Zhang, H., Ji, J. et al. Fabrication of WO3 nanorod/graphene/BiV1−xMoxO4 heterojunction photoelectrode for efficient photoelectrochemical water splitting. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-02880-3

Download citation