Advertisement

Low consumption design of hollow NiCo-LDH nanoflakes derived from MOFs for high-capacity electrode materials

  • 5 Accesses

Abstract

A low consumption and facile method was employed to prepare hollow nickel–cobalt-layered double hydroxide (NiCo-LDH) nanoflakes grown in situ on nickel foam in deionized water at room temperature. By using MOFs (Metal–organic frameworks) as the precursor and then adjusting the Ni2+ ion exchange reaction time, the surface morphology and electrochemical performance of NiCo-LDH electrode materials can be greatly optimized. NiCo-LDH nanoflakes with a thickness of 150 nm as electrode material have a high specific capacity of 2148 F/g at the current density of 1 A/g and possess cycling stability of 82% capacity retention after 1000 cycles. This study provides a prominent approach for fabricating hollow nanomaterials with three-dimensional structures, and its excellent electrochemical performances make it a promising candidate for low energy consumption and high-performance energy storage devices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reference

  1. 1.

    Y. Gong, H. Pan, Z. Xu et al., Int. J. Hydrogen Energy 31, 14360–14368 (2018)

  2. 2.

    H. Su, Y.F. Xu, S.Y. Shen et al., J. Energy Chem. 27, 1637–1643 (2018)

  3. 3.

    P. Ge, C. Zhang, H. Hou et al., Nano Energy 48, 617–629 (2018)

  4. 4.

    M. Lan, R. Guo, Y. Dou, J. Zhou, A. Zhou, J. Li, Nano Energy 33, 238–246 (2017)

  5. 5.

    W. Zhan, L. Sun, X. Han, Nano-Micro Lett. 11, 1 (2019)

  6. 6.

    C. Jiao, Z. Wang, X. Zhao et al., Angew. Chem. Int. Ed. 57, 1–6 (2018)

  7. 7.

    X. Cao, Z. Han, Chem. Commun. 55, 1746–1749 (2019)

  8. 8.

    R. Lina, H. Leia, D. Ruana et al., Nano Energy 56, 82–91 (2019)

  9. 9.

    A. González, E. Goikole, J.A. Barrena et al., Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

  10. 10.

    W. Raza, F. Ali, N. Raza et al., Nano Energy 52, 441–473 (2018)

  11. 11.

    F. Cao, M. Gan, L. Ma et al., Synth. Met. 234, 154–160 (2017)

  12. 12.

    L. Li, J. Xu, J. Lei et al., J. Mater. Chem. A 3, 1953–1960 (2015)

  13. 13.

    H. Niu, Y. Zhang, Y. Liu et al., J. Colloid Interface Sci. 539, 545–552 (2019)

  14. 14.

    Y. Du, R.Z. Chen, J.F. Yao et al., Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. J. Alloys Compd. 551, 125–130 (2013)

  15. 15.

    X. Han, X. He, F. Wang et al., J. Mater. Chem. A 5(21), 10220–10226 (2017)

  16. 16.

    B. Ma, P.Y. Guan, Q.Y. Li et al., ACS Appl. Mater. Interfaces 8(40), 26794–26800 (2016)

  17. 17.

    J.W. Lee, J.M. Ko, J.D. Kim, J. Phys. Chem. C 115, 19445 (2011)

  18. 18.

    Y. Wang, S. Gai, C. Li et al., Electrochim. Acta 90, 673 (2013)

  19. 19.

    G.S. Gund, D.P. Dubal, S.B. Jambure et al., J. Mater. Chem. A 1, 4793 (2013)

  20. 20.

    Y. Chen, B. Qu, L. Hu et al., Nanoscale 5, 9812 (2013)

  21. 21.

    Z. Lu, Z. Chang, W. Zhu et al., Chem. Commun. 47, 9651 (2011)

  22. 22.

    H. Ma, J. He, D.B. Xiong et al., ACS Appl. Mater. Interfaces 8, 1992–2000 (2016)

  23. 23.

    D. Zha, P. Xiong, X. Wang, Electrochim. Acta 185, 218–228 (2015)

  24. 24.

    S. Zhang, Y. Zhu, X. Tang et al., J. Mater. Sci. 29, 20800–20807 (2018)

  25. 25.

    T. Wang, S. Zhang, X. Yan et al., ACS Appl. Mater. Interfaces 9, 15510–15524 (2017)

  26. 26.

    P. Wang, Y. Li, S. Li et al., J. Mater. Sci. 28, 9221–9227 (2017)

  27. 27.

    H. Hu, B.Y. Guan, B.Y. Xia et al., J. Am. Chem. Soc. 137, 5590 (2015)

  28. 28.

    C. Guan, X. Liu, W. Ren, Adv. Energy Mater. 7(12), 1602391 (2017)

  29. 29.

    L. Shen, L. Yu, H. Wu et al., Nat. Commun. 6, 6694 (2015)

  30. 30.

    G. Fang, J. Zhou, C. Liang et al., Nano Energy 26, 57–65 (2016)

  31. 31.

    J. Wang, J. Tang, B. Ding, Small 14, 1704461 (2018)

  32. 32.

    Z. Lv, Q. Zhong, Y. Bu, Adv. Mater. Interfaces 5, 1800438 (2018)

  33. 33.

    H. Chen, L. Hu, M. Chen et al., Adv. Funct. Mater. 24, 934–942 (2014)

  34. 34.

    H. Jin, D. Yuan, S. Zhu et al., Dalton Trans. 47, 8706–8715 (2018)

  35. 35.

    T. Guan, L. Fang, Y. Lu et al., Colloids and Surf. A 529, 907–915 (2017)

  36. 36.

    Y.M. Jeong, I. Son, S.H. Baek, Appl. Surf. Sci. 20, 963–967 (2019)

  37. 37.

    T. Yan, R. Li, Z. Li, Mater. Res. Bull. 51, 97–104 (2014)

  38. 38.

    T. Yan, R. Li, T. Yang et al., Electrochim. Acta 152, 530–537 (2015)

  39. 39.

    Z. Lv, Q. Zhong, Y. Bu, Electron. Mater. Lett. 12, 824–829 (2016)

  40. 40.

    H. Jia, Z. Wang, X. Zheng, Chem. Eng. J. 351, 348–355 (2018)

  41. 41.

    J. Ji, L. Zhang, H. Ji et al., ACS Nano 7, 6237–6243 (2013)

  42. 42.

    S. Zhang, Y. Zhu, C. Kong et al., J. Mater. Sci. 30, 16000 (2019)

  43. 43.

    L. Mei, T. Yang, C. Xu et al., Nano Energy 3, 36–45 (2014)

  44. 44.

    D. Yu, B. Wu, J. Ran et al., J. Mater. Chem. A 4, 16953–16960 (2016)

  45. 45.

    D. Zha, H. Sun, Y. Fu et al., Electrochim. Acta 236, 18–27 (2017)

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (Grant Nos. 51505478 and 51705517) and the Fundamental Research Funds for the Central Universities (Grant No. 2013QNA05).

Author information

Correspondence to Jianwei Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Xu, F., Zhang, S. et al. Low consumption design of hollow NiCo-LDH nanoflakes derived from MOFs for high-capacity electrode materials. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-02876-z

Download citation