Advertisement

Correlation between crystal structure and microwave dielectric properties of CaRE4Si3O13 (RE = La, Nd, Sm, and Er)

  • Kang Du
  • Zheng-Yu Zou
  • Xiao-Qiang Song
  • Jun Fan
  • Wen-Zhong Lu
  • Wen LeiEmail author
Article
  • 12 Downloads

Abstract

Novel CaRE4Si3O13 (RE = La, Nd, Sm, and Er) microwave dielectric ceramics were prepared using solid-state reaction sintered at 1350–1400 °C for 5 h. CaRE4Si3O13 (RE = La, Nd, Sm, and Er) possessed an apatite structure with the P63/m space group. The lattice parameters a, b and c; theoretical density and unit cell volumes of CaRE4Si3O13 (RE = La, Nd, Sm, and Er) gradually decreased when RE changed from La to Er, and a pure phase was formed at all compositions. The εr, Q × f, and τf values of the CaRE4Si3O13 (RE = La, Nd, Sm, and Er) ceramics were related to the total ionic polarizability, packing fraction, and polyhedral distortion of RE/Ca(2)O7, respectively. The optimal microwave dielectric properties of the CaRE4Si3O13 ceramics (εr = 13.37, Q × f = 18,600 GHz, and τf =  − 17.8 ppm/°C) were obtained at RE = Er.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC-51572093 and 51772107), Research Projects of Electronic Components and Devices of China (1807WM0004), the Major Programs of Technical Innovation in Hubei Province of China (2018AAA039), and the Innovation Team Program of Hubei Province (New microwave devices for next generation wireless communication systems).

References

  1. 1.
    M.T. Sebastian, Dielectric materials for wireless communications (Elseiver, Oxford, 2008)Google Scholar
  2. 2.
    I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006)Google Scholar
  3. 3.
    M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc. 23(14), 2573–2578 (2003)CrossRefGoogle Scholar
  5. 5.
    H.H. Guo, D. Zhou, L.X. Pang, J.Z. Su, Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss. J. Materiomics 4(4), 368–382 (2018)CrossRefGoogle Scholar
  6. 6.
    S.P. Wu, C. Jiang, Y.X. Mei, W.P. Tu, Synthesis and microwave dielectric properties of Sm2SiO5 ceramics. J. Am. Ceram. Soc. 95(1), 37–40 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Du, X.Q. Song, J. Li, J.M. Wu, W.Z. Lu, X.C. Wang, W. Lei, Optimized phase compositions and improved microwave dielectric properties based on calcium tin silicates. J. Eur. Ceram. Soc. 39(2–3), 340–345 (2019)CrossRefGoogle Scholar
  8. 8.
    S.P. Wu, D.F. Chen, C. Jiang, Y.X. Mei, Q. Ma, Synthesis of monoclinic CaSnSiO5 ceramics and their microwave dielectric properties. Mater. Lett. 91, 239–241 (2013)CrossRefGoogle Scholar
  9. 9.
    S.P. Wu, D.F. Chen, Y.X. Mei, Q. Ma, Synthesis and microwave dielectric properties of Ca3SnSi2O9 ceramics. J. Alloys Compd. 521, 8–11 (2012)CrossRefGoogle Scholar
  10. 10.
    P.G. Shakhil, A. Antoney, P.V. Narayanan, T. Sanaj, L. Jose, N.S. Arun, R. Ratheesh, Preparation, characterization and dielectric properties of Ca2ZrSi4O12 ceramic and filled silicone rubber composites for microwave circuit applications. Mater. Sci. Eng. B. 225, 115–121 (2017)Google Scholar
  11. 11.
    A. Kan, H. Ogawa, H. Ohsato, Synthesis and crystal structure-microwave dielectric property relations in Sn-substituted Ca3(Zr1− xSnx)Si2O9 solid solutions with cuspidine structure. Jpn. J. Appl. Phys. 46, 7108–7111 (2007)CrossRefGoogle Scholar
  12. 12.
    X.Q. Song, K. Du, J. Li, W.Z. Lu, X.C. Wang, W. Lei, Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9 ceramics. J. Alloys Compd. 750, 996–1002 (2018)CrossRefGoogle Scholar
  13. 13.
    X.Q. Song, K. Du, J. Li, R. Muhammad, W.Z. Lu, X.C. Wang, W. Lei, Crystal structures and microwave dielectric properties of novel low-permittivity Ba1− xSrxZnSi3O8 ceramics. Mater. Res. Bull. 112, 178–181 (2019)CrossRefGoogle Scholar
  14. 14.
    Z.Y. Zou, Z.H. Chen, X.K. Lan, W.Z. Lu, B. Ullah, X.H. Wang, W. Lei, Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+ x )Si2O(7+ x ) ceramics. J. Eur. Ceram. Soc. 37(9), 3065–3071 (2017)CrossRefGoogle Scholar
  15. 15.
    W. Lei, R. Ang, X.C. Wang, W.Z. Lu, Phase evolution and near-zero shrinkage in BaAl2Si2O8 low-permittivity microwave dielectric ceramics. Mater. Res. Bull. 50, 235–239 (2014)CrossRefGoogle Scholar
  16. 16.
    X.Q. Song, M.Q. Xie, K. Du, W.Z. Lu, W. Lei, Synthesis, crystal structure and microwave dielectric properties of self-temperature stable Ba1− xSrxCuSi2O6 ceramics for millimeter-wave communication. J. Mater. 5(4), 606–617 (2019)Google Scholar
  17. 17.
    N.M. Khaidukov, M. Kirm, E. Feldbach, H. Magi, V. Nagirnyi, E. Toldsepp, S. Vielhauer, T. Justel, V.N. Makhow, Luminescence properties of silicate apatite phosphors M2La8Si6O26: Eu (M = Mg, Ca, Sr). J. Lumin. 191, 51–55 (2017)CrossRefGoogle Scholar
  18. 18.
    L.W. Schroeder, M. Mathew, Cation ordering in Ca2La8(SiO4)6O24. J. Solid. State Chem. 26, 383–387 (1978)CrossRefGoogle Scholar
  19. 19.
    J.V. Crum, S. Chong, J.A. Peterson, B.J. Riley, Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2. Acta. Cryst. E 75, 1020–1025 (2019)CrossRefGoogle Scholar
  20. 20.
    S. Thomas, M.T. Sebastian, Microwave dielectric properties of Sr2RE8Si6O26 (RE = La, Pr, Nd, Sm, Er, Gd, Tb, Dy, Er, Tm, Yb, and Y) ceramics. J. Am. Ceram. Soc. 92(12), 2975–2981 (2009)CrossRefGoogle Scholar
  21. 21.
    J.B. Song, K.X. Song, J.S. Wei, H.X. Lin, J.M. Xu, J. Wu, W.T. Su, Microstructure characteristics and microwave dielectric properties of calcium apatite ceramics as microwave substrates. J. Alloys Compd. 731, 264–270 (2018)CrossRefGoogle Scholar
  22. 22.
    M.T. Sebastian, Silicate and aluminate based dielectric ceramics for microwave communication (2010)Google Scholar
  23. 23.
    C.C. Li, H.C. Xiang, M.Y. Xu, Y. Tang, L. Fang, Li2AGeO4 (A = Zn, Mg): Two novel low-permittivity microwave dielectric ceramics with olivine structure. J. Eur. Ceram. Soc. 38(4), 1524–1528 (2018)CrossRefGoogle Scholar
  24. 24.
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969)CrossRefGoogle Scholar
  25. 25.
    A.C. Larson, R.B. Von Dreele, Los Alamos National Laboratory Report. LAUR, pp. 86–748 (1994)Google Scholar
  26. 26.
    B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001)CrossRefGoogle Scholar
  27. 27.
    B.W. Hakki, P.D. Coleman, A dielectric resonant method of measuring inductive capacitance in the millimeter range. IRE Trans. Microw. Theory Technol. 8, 402–410 (1960)CrossRefGoogle Scholar
  28. 28.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  29. 29.
    X.Q. Song, W.Z. Lu, X.C. Wang, X.H. Wang, G.F. Fan, R. Muhammad, W. Lei, Sintering behaviour and microwave dielectric properties of BaAl2−2 x(ZnSi)xSi2O8 ceramic. J. Eur. Ceram. Soc. 38(4), 1529–1534 (2018)CrossRefGoogle Scholar
  30. 30.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)CrossRefGoogle Scholar
  31. 31.
    P. Zhang, Y.G. Zhao, L.X. Li, The correlations among bond ionicity, lattice energy and microwave dielectric properties of (Nd1− xLax)NbO4 ceramics. Phys. Chem. Chem. Phys. 17, 16692–16698 (2015)CrossRefGoogle Scholar
  32. 32.
    W. Lei, A. Ran, X.C. Wang, W.Z. Lu, Phase evolution and near-zero shrinkage in BaAl2Si2O8 low-permittivity microwave dielectric ceramics. Mater. Res. Bull. 50, 235–239 (2014)CrossRefGoogle Scholar
  33. 33.
    G. Wang, D.N. Zhang, F. Xu, X. Huang, Y. Yang, G.W. Gan, Y.M. Lai, Y.H. Rao, C. Liu, J. Li, L.C. Jin, H.W. Zhang, Correlation between crystal structure and modified microwave dielectric characteristics of Cu2+ substituted Li3Mg2NbO6 ceramics. Ceram. Int. 45(8), 10170–10175 (2019)CrossRefGoogle Scholar
  34. 34.
    W. Lei, Z.Y. Zou, Z.H. Chen, B. Ullah, A. Zeb, X.K. Lan, W.Z. Lu, G.F. Fan, X.H. Wang, X.C. Wang, Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratios. J. Am. Ceram. Soc. 101(1), 25–30 (2017)CrossRefGoogle Scholar
  35. 35.
    Y.M. Lai, X.L. Tang, X. Huang, H.W. Zhang, X.F. Liang, J. Li, H. Su, Phase composition, crystal structure and microwave dielectric properties of Mg2− xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38(4), 1508–1516 (2018)CrossRefGoogle Scholar
  36. 36.
    C. Te Lee, C.C. Ou, Y.C. Lin, C.Y. Huang, C.Y. Su, Structure and microwave dielectric property relations in (Ba1− xSrx)5Nb4O15 system. J. Eur. Ceram. Soc. 27(5), 2273–2280 (2007)CrossRefGoogle Scholar
  37. 37.
    S.D. Ramarao, V.R.K. Murthy, Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scr. Mater. 69(3), 274–277 (2013)CrossRefGoogle Scholar
  38. 38.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)CrossRefGoogle Scholar
  39. 39.
    Y. Zhang, Y. Zhang, M. Xiang, Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics. J. Eur. Ceram. Soc. 36(8), 945–1951 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Key Lab of Functional Materials for Electronic Information (B)Ministry of EducationWuhanPeople’s Republic of China
  3. 3.Engineering Research Center for Functional CeramicsMinistry of EducationWuhanPeople’s Republic of China

Personalised recommendations